In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Resource License Agreement
This resource is shared under the Creative Commons Attribution CC BY.
In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Please wait for the process to complete.
Redirecting to the referenced web URL
The content you have requested to access is not stored in HydroShare, and we can’t guarantee its availability,
quality, security, or size. If the externally linked content is large, access may take time.
Get file URL
You have requested the URL for a file that is within a Discoverable resource.
This resource has Private Link Sharing enabled.
This means that anyone with the link will be able to access the file,
but users without the link will not be permitted unless they have "view" permission on this resource.
You have requested the URL for a file that is within a Discoverable resource.
Only you and other HydroShare users who have been granted at least "view" permission will be able to access this URL.
If you want this URL to be publicly available,
change the sharing status of your resource to "public" or enable Private Link Sharing.
You have requested the URL for a file that is within a Private resource.
This resource has Private Link Sharing enabled.
This means that anyone with the link will be able to access the file,
but users without the link will not be permitted unless they have "view" permission on this resource.
You have requested the URL for a file that is within a Private resource.
Only you and other HydroShare users who have been granted at least "view" permission will be able to access this URL.
If you want this URL to be publicly available, change the sharing status of your resource to "public" or enable Private Link Sharing.
Choose coordinates
Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
The following files/folders contain non-preferred characters in their name.
This may result in problems and you are encouraged to change the name to follow the
HydroShare preferred character set.
This repository contains the data and code used to analyze the impact of antecedent soil moisture conditions on flooding caused by atmospheric rivers for our paper:
Webb, M. J., Albano, C. M., Harpold, A. A., Wagner, D. M., & Wilson, A. M. (2025). Wet Antecedent Soil Moisture Increases Atmospheric River Streamflow Magnitudes Non-Linearly. Journal of Hydrometeorology. https://doi.org/10.1175/JHM-D-24-0078.1
"In this study, we analyze how antecedent soil moisture (ASM) conditions contribute to variability in streamflow during atmospheric river (AR) events and how that changes across climatic regimes and physiography in 122 U.S. West Coast watersheds. We identify a robust non-linear relationship between streamflow and ASM during ARs in 89% of watersheds. The inflection point in this relationship represents a watershed-specific critical ASM threshold, above which event maximum streamflow is, on average, two to four and a half times larger. Wet ASM conditions amplify the hydrologic impacts of more frequent but weaker, lower moisture transport AR events, while dry ASM conditions attenuate the hydrologic impacts that stronger, higher moisture transport AR events could otherwise cause. Our research shows that watersheds prone to ASM-amplified streamflows have higher evaporation ratios, lower cold-season precipitation, lower snow-to-rain ratios, and shallower, clay-rich soils. Higher evaporation and lower precipitation lead to greater ASM variability during the cold season, increasing streamflow during wet periods and buffering streamflow during dry periods. Lower snow fraction and shallower soils limit the antecedent water storage capacity of a watershed, contributing to greater sensitivity of streamflow peaks to ASM variability. Incorporating ASM thresholds into hydrologic models in these regions prone to AR-amplified streamflow could improve forecasts and decrease uncertainty."
This resource contains links to external content. Linked content is
NOT stored in HydroShare, and we can't guarantee its availability, quality, or
security.
Confirm files deletion
This file will be permanently deleted. Consider saving a copy if it is
important to you. If this is the last file in the resource and it is public,
the sharing status will revert to private. If you are not the owner of
this resource, then an owner will need to reset this to public after a new
file has been added. If you want to replace this file, add the new file
first then delete the old one, so that sharing status does not change.
# CITATION
Data and code for the following manuscript:
Webb, M. J., Albano, C. M., Harpold, A. A., Wagner, D. M., & Wilson, A. M. (2025). Wet Antecedent Soil Moisture Increases Atmospheric River Streamflow Magnitudes Non-Linearly. Journal of Hydrometeorology. https://doi.org/10.1175/JHM-D-24-0078.1
Please cite the above study if you use these data or code.
# OVERVIEW
- 'all_basin_characteristics.csv' = This file contains all compiled GAGES II watershed characteristics for the 122 study watersheds.
- 'WLDAS_events.csv' = This file contains all AR events and the corresponding data about climatology (e.g. precipitation and antecedent conditions) and streamflow response.
- 'PeakFQ_example' = This directory contains example data and scripts to conduct flood frequency analysis using the USGS PeakFQ software using the Bulletin 17C guidance.
- 'analysis_data_and_code.zip' = This zip file contains all the code and data necessary to reproduce our analyses. Additional guidance is provided in the enclosed .txt file. Note that raw WLDAS and Rutz AR Catalog netCDF files are not included due to size restrictions but can be downloaded from GES DISC (https://disc.gsfc.nasa.gov/datasets/WLDAS_NOAHMP001_DA1_D1.0/summary?keywords=WLDAS) and ftp://sioftp.ucsd.edu/CW3E_DataShare/Rutz_AR_Catalog, respectively.
- 'publication_figures' = Zip file containing the basic data and code used to create the publication figures.
# NOTES
Please reach out with any questions. This is my first time posting code/data associated with a manuscript so it has been a learning experience.
Related Resources
This resource is referenced by
Webb, M. J., Albano, C. M., Harpold, A. A., Wagner, D. M., & Wilson, A. M. (2025). Wet Antecedent Soil Moisture Increases Atmospheric River Streamflow Magnitudes Non-Linearly. Journal of Hydrometeorology. https://doi.org/10.1175/JHM-D-24-0078.1
Credits
Delete Funding Agency
Are you sure you want to delete this funder?
Name:
Number:
Title:
Funding Agencies
This resource was created using funding from the following sources:
Comments
There are currently no comments
New Comment