Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...

Southeast Texas Networked Flood Monitoring Sensors


An older version of this resource http://www.hydroshare.org/resource/5ef9da543a994983b7b581519fa7a211 is available.
Authors:
Owners: This resource does not have an owner who is an active HydroShare user. Contact CUAHSI (help@cuahsi.org) for information on this resource.
Type: Resource
Storage: The size of this resource is 241.1 MB
Created: May 11, 2023 at 7:42 p.m.
Last updated: May 11, 2023 at 8:15 p.m. (Metadata update)
Published date: May 11, 2023 at 8:15 p.m.
DOI: 10.4211/hs.1d1ed97e40024409a866d2164e3e001c
Citation: See how to cite this resource
Content types: Geographic Feature Content 
Sharing Status: Published
Views: 812
Downloads: 238
+1 Votes: Be the first one to 
 this.
Comments: No comments (yet)

Abstract

Description:
Floods are common natural disasters worldwide and pose substantial risks to life, property, food production, and natural resources. Effective measures for flood mitigation and warning are important. Southeast Texas is still at substantial risk of flooding and Lamar University is assisting the region with asset management of a flood sensor network for flooding events. This network provides real-time water stage information. To make these data more useful for flood monitoring and mapping, Lamar University developed a program to measure elevation and coordinates for the various sensor locations. This paper overviews the measurement of the elevation and coordinates of 74 networked flood sensors and various thresholds at critical points used by flood decision-makers for reference at each site. These sensors, in the first phase of this program, were deployed throughout a 7-county region spanning nearly 6000 square miles in Southeast Texas. The latitude and longitude of the sensors, along with their elevations, were determined using survey-grade Global Navigation Satellite System (GNSS) technology. This is an accurate, rapid, and relatively low-cost surveying method. Various Continually Operating Reference Stations (CORS) were examined during post-processing to achieve the most accurate horizontal and vertical results. After differential corrections were applied, accuracies of 0.4 in. (or better) were achieved. Each site's critical points and thresholds were also established using this method. The thresholds, elevations, and positions of these sensors and their surrounding critical points are transmitted to various dashboards on websites. These data are used to aid with decisions related to road closures or modeling efforts by mitigation decision-makers, emergency managers, and the public, including the Texas Department of Transportation, Houston Transtar, the National Weather Service, and the Sabine River Authority of Texas (SRA). This data may also be used in the development of flood hydrological models in Southeast Texas watersheds and sub-basins. This program currently involves the Flood Coordination Study team which is part of the Center for Resiliency at Lamar University in collaboration with various entities such as the U.S. Department of Homeland Security Science and Technology Directorate, the Southeast Texas Flood Control District, and various other regional agencies, municipalities, and industries.

Steps to reproduce:
A Trimble GEOX7 Global Navigation Satellite System (GNSS) handheld device, which employs Trimble H-StarTM technology, and a ZIPLEVEL PRO-2000 High Precision Altimeter was used to determine the coordinates and elevations of the sensors and surrounding critical points. Post-processing of the GNSS data used the Trimble GPS Pathfinder Office software. The closest CORS base stations were used for differential corrections and the NAD 1983 (2011) (epoch 2010.00) horizontal datum was used as the geographic coordinate system. Furthermore, orthometric heights were calculated using GEOID 18 which is referenced to the North American Vertical Datum of 1988 (NAVD 88). ArcGIS Pro 3 was used to create a map of the sensors and critical points, as well as a watershed delineation relative to Southeast Texas landmarks.
Data were gathered in Southeast Texas watersheds and sub-watersheds in order to monitor and map the elevation and movement of water in the drainages. Vertical and horizontal positions of the 74 flood sensors installed in the first phase of the project and their surrounding critical points, including the node (solar panels, battery, and transmission device), the bottom of the posts that nodes attached (bottom of the node from now on), top of the bank, the bottom of the ditch, the bottom of the bridge's deck, and the center of the road and edges, have been gathered accordingly. Also, the relative elevations between these points are important and were collected.

Subject Keywords

Coverage

Spatial

Coordinate System/Geographic Projection:
WGS 84 EPSG:4326
Coordinate Units:
Decimal degrees
North Latitude
30.9537°
East Longitude
-93.6232°
South Latitude
29.6763°
West Longitude
-94.8415°

Content

Data Services

The following web services are available for data contained in this resource. Geospatial Feature and Raster data are made available via Open Geospatial Consortium Web Services. The provided links can be copied and pasted into GIS software to access these data. Multidimensional NetCDF data are made available via a THREDDS Data Server using remote data access protocols such as OPeNDAP. Other data services may be made available in the future to support additional data types.

Related Resources

This resource updates and replaces a previous version Hariri Asli, H., N. A. Brake, J. M. Kruger, L. M. Haselbach, M. Adesina (2023). Southeast Texas Networked Flood Monitoring Sensors, HydroShare, http://www.hydroshare.org/resource/5ef9da543a994983b7b581519fa7a211

Credits

Funding Agencies

This resource was created using funding from the following sources:
Agency Name Award Title Award Number
U.S. Department of Homeland Security
Center for Resiliency, Lamar University

How to Cite

Hariri Asli, H., N. A. Brake, J. M. Kruger, L. M. Haselbach, M. Adesina (2023). Southeast Texas Networked Flood Monitoring Sensors, HydroShare, https://doi.org/10.4211/hs.1d1ed97e40024409a866d2164e3e001c

This resource is shared under the Creative Commons Attribution CC BY.

http://creativecommons.org/licenses/by/4.0/
CC-BY

Comments

There are currently no comments

New Comment

required