Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
This resource contains some files/folders that have non-preferred characters in their name. Show non-conforming files/folders.
This resource contains content types with files that need to be updated to match with metadata changes. Show content type files that need updating.
Authors: |
|
|
---|---|---|
Owners: |
|
This resource does not have an owner who is an active HydroShare user. Contact CUAHSI (help@cuahsi.org) for information on this resource. |
Type: | Resource | |
Storage: | The size of this resource is 1.4 MB | |
Created: | Mar 31, 2018 at 9:56 p.m. | |
Last updated: | Apr 09, 2018 at 8:20 p.m. | |
Citation: | See how to cite this resource |
Sharing Status: | Public |
---|---|
Views: | 1820 |
Downloads: | 44 |
+1 Votes: | Be the first one to this. |
Comments: | No comments (yet) |
Abstract
Recent research has demonstrated the use of in‐well heat tracer tests monitored by a fiber optic distributed temperature sensing (DTS) system to characterize borehole flow conditions in open bedrock boreholes. However, the accuracy of borehole flow rates determined from in‐well heat tracer tests has not been evaluated. The purpose of the research presented here is to determine whether borehole flow rates obtained using DTS‐monitored in‐well heat tracer tests are reasonable, and to evaluate the range of flow rates measureable with this method. To accomplish this, borehole flow rates measured using in‐well heat tracer tests are compared to borehole flow rates measured in the same boreholes using an impeller or heat pulse flowmeter. A comparison of flow rates measured using in‐well heat tracer tests to flow rates measured with an impeller flowmeter under the same conditions showed good agreement. A comparison of in‐well heat tracer test flow rate measurements to previously‐collected heat pulse flowmeter measurements indicates that the heat tracer test results produced borehole flow rates and flow profiles similar to those measured with the heat pulse flowmeter. The results of this study indicate that borehole flow rates determined from DTS‐monitored in‐well heat tracer tests are reasonable estimates of actual borehole flow rates. In addition, the range of borehole flow rates measurable by in‐well heat tracer tests spans from less than 10−1 m/min to approximately 101 m/min, overlapping the ranges typically measurable with an impeller flowmeter or a heat pulse flowmeter, making in‐well heat tracer testing a versatile borehole flow logging tool.
Raw project data is available by contacting ctemps@unr.edu
Subject Keywords
Content
How to Cite
This resource is shared under the Creative Commons Attribution CC BY.
http://creativecommons.org/licenses/by/4.0/
Comments
There are currently no comments
New Comment