Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...

GroMoPo Metadata for DANUBIA MODFLOW decision-support model


Authors:
Owners: This resource does not have an owner who is an active HydroShare user. Contact CUAHSI (help@cuahsi.org) for information on this resource.
Type: Resource
Storage: The size of this resource is 1.7 KB
Created: Feb 08, 2023 at 2:41 a.m.
Last updated: Feb 08, 2023 at 2:41 a.m.
Citation: See how to cite this resource
Sharing Status: Public
Views: 769
Downloads: 241
+1 Votes: Be the first one to 
 this.
Comments: No comments (yet)

Abstract

The research project GLOWA-Danube, financed by the German Federal Government, is investigating long-term changes in the water cycle of the upper Danube river basin (77,000 km(2)) in light of global climatic change. Its aim is to build a fully integrated decision-support tool "DANUBIA" that combines the competence of 11 different research institutes in domains covering all major aspects governing the water cycle-from the formation of clouds, to groundwater flow patterns, to the behaviour of the water consumer. Both the influence of natural changes in the ecosystem, such as climate change, and changes in human behaviour, such as changes in land use or water consumption, are considered. DANUBIA is comprised of 15 individual disciplinary models that are connected via customized interfaces that facilitate network-based parallel calculations. The strictly object-oriented DANUBIA architecture was developed using the graphical notation tool UML (Unified Modeling Language) and has been implemented in Java code. All models use the same spatial discretisation for the exchange of data (1 x 1 km grid cells) but are using different time steps. The representation of a vast number of relevant physical and social processes that occur at different spatial and temporal scales is a very demanding task. Newly developed up- and downscaling procedures [Rojanschi, V., 2001. Effects of upscaling for a finite-difference flow model. Master's Thesis, Institut fur Wasserbau, Universitat Stuttgart, Stuttgart, Germany] and a sophisticated time controller developed by the computer sciences group [Hennicker, R., Barth, M., Kraus, A., Ludwig, M., 2002. DANUBIA: A Web-based modelling and decision support system for integrative global change research in the upper Danube basin. In: GSF (Ed.), GLOWA, German Program on Global Change in the Hydrological Cycle Status Report 2002. GSF, Munich, pp. 35-38; Kraus, A., Ludwig, M., 2003. GLOWA-Danube Papers Technical Release No. 002 (Danubia Framework), Software-Release No.: 0.9.2, Documentation Version: 0.10, Release Date: 27 March 2003] are required to solve the emerging problems. After a first successful public demonstration of the DANUBIA package (nine models) in May 2002 [Mauser, W., Stolz, R., Colgan, A., 2002. GLOWA-Danube: integrative techniques, scenarios and strategies regarding global change of the water cycle. In: GSF (Ed.), GLOWA, German Program on Global Change in the Hydrological Cycle (Phase I, 2000-2003) Status Report 2002. GSF, Munich, pp. 31-34], the research consortium is now preparing a first validation run of DANUBIA for the period 1995-1999 with all 15 models. After successful completion of the validation, a scenario run based on IPCC climate scenarios [IPCC, 2001. Climate Change 2001: Synthesis Report. In: Watson, R.T., Core Writing Team (Eds.), A Contribution of Working Groups I, II, and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA, 398pp] for a five year period between 2025 and 2040 will follow at the end of 2003. The research group "Groundwater and Water Resources Management" at the Institute of Hydraulic Engineering, Universitat Stuttgart, is contributing both a three-dimensional groundwater flow model of the catchment and an agent-based model for simulating water supply and distribution. This paper gives a general overview of the GLOWA-Danube project and describes the groundwater modeling segment. Nickel et al. deal with the water supply model in a second contribution to this special issue. A three-dimensional numerical groundwater flow model consisting of four main layers has been developed and is in a continual state of refinement (MODFLOW, [McDonald, M.G., Harbaugh, AW., 1988. A modular three-dimensional finite-difference ground-water flow model: US Geological Survey Techniques of Water-Resources Investigations, Washington, USA (book 6, Chapter A1)]). One main research focus has been on the investigation of upscaling techniques to meet the requirement of a fixed 1 x 1 km cell size. This cell size is compulsory for all models in DANUBIA in order to facilitate a one to one parameter exchange. In a second stage, a transport model (nitrogen) will be added (MT3D): [Zheng, C., Hathaway, D-L., 1991. MT3D: a new modular three-dimensional transport model and its application in predicting the persistence and transport of dissolved compounds from a gasoline spill, with implications for remediation. Association of Ground Water Scientists and Engineers Annual Meeting on Innovative Ground Water Technologies for the '90s, National Ground Water Association, Westerville, Ohio, USA. Ground Water 29 (5)]. (c) 2005 Elsevier Ltd. All rights reserved.

Subject Keywords

Coverage

Spatial

Coordinate System/Geographic Projection:
WGS 84 EPSG:4326
Coordinate Units:
Decimal degrees
Place/Area Name:
Germany
North Latitude
50.2116°
East Longitude
14.0270°
South Latitude
46.9016°
West Longitude
7.8086°

Content

Additional Metadata

Name Value
DOI 10.1016/j.pce.2005.06.003
Depth
Scale 10 001 - 100 000 km²
Layers 2-5 layers
Purpose Groundwater resources
GroMoPo_ID 134
IsVerified True
Model Code MODFLOW;MT3D
Model Link https://doi.org/10.1016/j.pce.2005.06.003
Model Time
Model Year 2005
Model Authors R. Barthel, V. Rojanschi, J. Wolf, J. Braun
Model Country Germany
Data Available Report/paper only
Developer Email roland.barthel@iws.uni-stuttgart.de
Dominant Geology Model focuses on multiple geologic materials
Developer Country Germany
Publication Title Large-scale water resources management within the framework of GLOWA-Danube. Part A: The groundwater model
Original Developer No
Additional Information
Integration or Coupling Surface water;Water use;Solute transport
Evaluation or Calibration Static water levels
Geologic Data Availability

How to Cite

GroMoPo, D. Kretschmer (2023). GroMoPo Metadata for DANUBIA MODFLOW decision-support model, HydroShare, http://www.hydroshare.org/resource/3f5cf61d4fe44b36bca91a732971cee6

This resource is shared under the Creative Commons Attribution CC BY.

http://creativecommons.org/licenses/by/4.0/
CC-BY

Comments

There are currently no comments

New Comment

required