Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
This resource contains some files/folders that have non-preferred characters in their name. Show non-conforming files/folders.
This resource contains content types with files that need to be updated to match with metadata changes. Show content type files that need updating.
Authors: |
|
|
---|---|---|
Owners: |
|
This resource does not have an owner who is an active HydroShare user. Contact CUAHSI (help@cuahsi.org) for information on this resource. |
Type: | Resource | |
Storage: | The size of this resource is 35.0 MB | |
Created: | Jun 30, 2023 at 8:31 p.m. | |
Last updated: | Jun 30, 2023 at 10:49 p.m. | |
Citation: | See how to cite this resource |
Sharing Status: | Public |
---|---|
Views: | 749 |
Downloads: | 34 |
+1 Votes: | Be the first one to this. |
Comments: | No comments (yet) |
Abstract
The United States is the largest producer of goods and services in the world. Rainfall, surface water supplies, and groundwater aquifers represent a fundamental input to economic production. Despite the importance of water resources to economic activity, we do not have consistent information on water use for specific locations and economic sectors. A national, spatially detailed database of water use by sector would provide insight into U.S. utilization and dependence on water resources for economic production. To this end, we calculate the water footprint of over 500 food, energy, mining, services, and manufacturing industries and goods produced in the United States. To do this, we employ a data intensive approach that integrates water footprint and input-output techniques into a novel methodological framework. This approach enables us to present the most detailed and comprehensive water footprint analysis of any country to date. This study broadly contributes to our understanding of water in the U.S. economy, enables supply chain managers to assess direct and indirect water dependencies, and provides opportunities to reduce water use through benchmarking. In fact, we find that 94% of U.S. industries could reduce their total water footprint more by sourcing from more water-efficient suppliers in their supply chain than they could by converting their own operations to be more water-efficient.
Subject Keywords
Coverage
Spatial
Temporal
Start Date: | |
---|---|
End Date: |
Content
Credits
Funding Agencies
This resource was created using funding from the following sources:
Agency Name | Award Title | Award Number |
---|---|---|
National Science Foundation | Grant Numbers: ACI-1639529 , EAR-1534544 | |
National Defense Science & Engineering Graduate Fellowship Program |
How to Cite
This resource is shared under the Creative Commons Attribution CC BY.
http://creativecommons.org/licenses/by/4.0/
Comments
There are currently no comments
New Comment