In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Resource License Agreement
This resource is shared under the Creative Commons Attribution CC BY.
In downloading this resource contents you are ethically bound to respect the terms of this license.
Please confirm that you accept the terms of this license below before you can do any downloads for this resource.
Please wait for the process to complete.
Redirecting to the referenced web URL
The content you have requested to access is not stored in HydroShare, and we can’t guarantee its availability,
quality, security, or size. If the externally linked content is large, access may take time.
Get file URL
You have requested the URL for a file that is within a Discoverable resource.
This resource has Private Link Sharing enabled.
This means that anyone with the link will be able to access the file,
but users without the link will not be permitted unless they have "view" permission on this resource.
You have requested the URL for a file that is within a Discoverable resource.
Only you and other HydroShare users who have been granted at least "view" permission will be able to access this URL.
If you want this URL to be publicly available,
change the sharing status of your resource to "public" or enable Private Link Sharing.
You have requested the URL for a file that is within a Private resource.
This resource has Private Link Sharing enabled.
This means that anyone with the link will be able to access the file,
but users without the link will not be permitted unless they have "view" permission on this resource.
You have requested the URL for a file that is within a Private resource.
Only you and other HydroShare users who have been granted at least "view" permission will be able to access this URL.
If you want this URL to be publicly available, change the sharing status of your resource to "public" or enable Private Link Sharing.
Choose coordinates
Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
The following files/folders contain non-preferred characters in their name.
This may result in problems and you are encouraged to change the name to follow the
HydroShare preferred character set.
Quantitative characterization of the dynamics of water exchange fluxes between rivers and aquifers is necessary for water resources management, water quality, environment and ecology of the river-aquifer systems. The main uncertain factors for predicting river–aquifer exchange fluxes are aquifer and riverbed properties. In this study, we characterize the flux exchange dynamics between Brazos River Alluvium Aquifer and Brazos River, TX, USA, using alternative conceptual models. Six alternative conceptual models for the connection between the river and the aquifer, having varying aquifer lithology and river incision levels and incorporating processes such as river bed clogging and seepage face flow, are numerically modeled in HYDRUS 2D using small-scale, high-resolution transects across the river. Modeled results are tested against observed heads in three wells and finally a best-fit conceptual model is used to quantify river-aquifer flux exchange dynamics. Additionally we focused on how factors such as aquifer lithology, river channel incision, water table conditions, seepage face boundaries, and low-conductivity river-bed effect hydraulic head distribution and the corresponding flux exchange dynamics. Our results demonstrate that only a small portion of the aquifer close to the river channel is well-connected with the river and a major portion of the aquifer is disconnected. The proposed conceptual model predicts a) much frequent flux reversals (changes between gaining and losing conditions) and b) much smaller amount of recharge and discharges compared to that of the conceptual model which has been assumed by earlier studies; a reduction of 151% in recharge and 116% in discharges. These results suggest that the magnitude and dynamics of water flux exchange between the river and the aquifer are independent of the hydraulic gradients in the wider disconnected aquifer and are determined by the hydraulic gradients in the connected aquifer close to the river. The results also demonstrate that river-aquifer flux exchange is sensitive to aquifer lithology, river incision depth, and river-bed clogging. While different settings of aquifer lithology and river incision can produce very similar heads in the wider aquifer, the hydraulic head distribution close to the river and hence the river-aquifer flux exchange varies quite drastically from model to model. River-bed clogging decreases the magnitude of fluxes and effects hydraulic head in the aquifer, especially in the vicinity of the river channel, depending upon the gaining and losing river conditions. Furthermore, seepage face flow could be of the same order as that of flows through river-bed depending upon aquifer lithology and corresponding river incision depth.
This resource contains links to external content. Linked content is
NOT stored in HydroShare, and we can't guarantee its availability, quality, or
security.
Confirm files deletion
This file will be permanently deleted. Consider saving a copy if it is
important to you. If this is the last file in the resource and it is public,
the sharing status will revert to private. If you are not the owner of
this resource, then an owner will need to reset this to public after a new
file has been added. If you want to replace this file, add the new file
first then delete the old one, so that sharing status does not change.
This resource was created using funding from the following sources:
Agency Name
Award Title
Award Number
National Science Foundation
CAREER
CBET 13551558
Contributors
People or Organizations that contributed technically, materially, financially, or provided general support for the
creation of the resource's content but are not considered authors.
Comments
There are currently no comments
New Comment