Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
This resource contains some files/folders that have non-preferred characters in their name. Show non-conforming files/folders.
This resource contains content types with files that need to be updated to match with metadata changes. Show content type files that need updating.
Authors: |
|
|
---|---|---|
Owners: |
|
This resource does not have an owner who is an active HydroShare user. Contact CUAHSI (help@cuahsi.org) for information on this resource. |
Type: | Resource | |
Storage: | The size of this resource is 949.1 KB | |
Created: | Mar 31, 2018 at 9:49 p.m. | |
Last updated: | Apr 09, 2018 at 8:22 p.m. | |
Citation: | See how to cite this resource |
Sharing Status: | Public |
---|---|
Views: | 1716 |
Downloads: | 49 |
+1 Votes: | Be the first one to this. |
Comments: | No comments (yet) |
Abstract
We present a novel technique to simultaneously measure wind speed (U) at thousands of locations continuously in time based on measurement of velocity‐dependent heat transfer from a heated surface. Measuring temperature differences between paired passive and actively heated fiber‐optic (AHFO) cables with a distributed temperature sensing system allowed estimation of U at over 2000 sections along the 230 m transect (resolution of 0.375 m and 5.5 s). The underlying concept is similar to that of a hot wire anemometer extended in space. The correlation coefficient between U measured by two colocated sonic anemometers and the AHFO were 0.91 during the day and 0.87 at night. The combination of classical passive and novel AHFO provides unprecedented dynamic observations of both air temperature and wind speed spanning 4 orders of magnitude in spatial scale (0.1–1000 m) while resolving individual turbulent motions, opening new opportunities for testing basic theories for near‐surface geophysical flows.
Raw project data is available by contacting ctemps@unr.edu
Subject Keywords
Content
How to Cite
This resource is shared under the Creative Commons Attribution CC BY.
http://creativecommons.org/licenses/by/4.0/
Comments
There are currently no comments
New Comment