Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
This resource contains some files/folders that have non-preferred characters in their name. Show non-conforming files/folders.
This resource contains content types with files that need to be updated to match with metadata changes. Show content type files that need updating.
Data for "Particle-size control on the structure and collapsibility of sediments formed by air-fall deposition"
Authors: |
|
|
---|---|---|
Owners: |
|
This resource does not have an owner who is an active HydroShare user. Contact CUAHSI (help@cuahsi.org) for information on this resource. |
Type: | Resource | |
Storage: | The size of this resource is 24.4 KB | |
Created: | Jul 15, 2023 at 7:24 a.m. | |
Last updated: | Jul 15, 2023 at 7:27 a.m. | |
Citation: | See how to cite this resource |
Sharing Status: | Public |
---|---|
Views: | 606 |
Downloads: | 5 |
+1 Votes: | Be the first one to this. |
Comments: | No comments (yet) |
Abstract
Aeolian deposition is significant to the landscape formation on Earth and even other planetary bodies. Particle size controls the transport distance of particles. However, the understanding of particle-size effects on the structure and mechanical behavior of aeolian accumulations remains limited. We investigate the effect of particle size on the structure and collapse of aeolian sediments by one-dimensional compression and collapse tests following the initial air-fall deposition of particles of various sizes from sand to fine silt. Results reveal that the relevance between interparticle forces and gravity controls the formation of two distinct sediment structures as the particle size varies. A loose structure with a packing density close to the simple cubic packing forms for sands and is not collapsible. An open structure with higher porosity forms as particle size becomes smaller. The structure can stack vertically. The stacking height, porosity, and collapsibility increase as particle size decreases. A dimensionless granular bond number Bo captures the relevance between van der Waals forces and gravity. A threshold particle size corresponding to Bo = 10 is identified, below which open and collapsible structures form. The structure forms due to distinctive accumulation behavior. Particle interaction forces create porous aggregates, stabilize the aggregate as it contacts the deposit, and retain open pores. The effect of fine particles on properties of deposited mixtures is also analyzed. Results are relevant to understanding the formation of collapsible aeolian deposits on Earth and may contribute to the estimation of the physical properties of aeolian sediments on other planetary bodies.
Subject Keywords
Content
How to Cite
This resource is shared under the Creative Commons Attribution CC BY.
http://creativecommons.org/licenses/by/4.0/
Comments
There are currently no comments
New Comment