Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
This resource contains some files/folders that have non-preferred characters in their name. Show non-conforming files/folders.
This resource contains content types with files that need to be updated to match with metadata changes. Show content type files that need updating.
| Authors: |
|
|
|---|---|---|
| Owners: |
|
This resource does not have an owner who is an active HydroShare user. Contact CUAHSI (help@cuahsi.org) for information on this resource. |
| Type: | Resource | |
| Storage: | The size of this resource is 47 bytes | |
| Created: | Nov 06, 2025 at 5:35 p.m. (UTC) | |
| Last updated: | Nov 06, 2025 at 5:35 p.m. (UTC) | |
| Citation: | See how to cite this resource |
| Sharing Status: | Public |
|---|---|
| Views: | 8 |
| Downloads: | 0 |
| +1 Votes: | Be the first one to this. |
| Comments: | No comments (yet) |
Abstract
T-Route, a dynamic channel routing model, offers a comprehensive solution for river network routing problems. It is designed to handle 1-D channel routing challenges in vector-based river network data, such as the USGS's NHDPlus High Resolution dataset, and OGC WaterML 2.0 Surface Hydrology Features (HY_Features) data model used in NextGen framework.
Provided a series lateral inflows for each node in a channel network, T-Route computes the resulting streamflows. T-Route requires that all routing computations srictly obey an upstream-to-downstream ordering. Such ordering facilitates the heterogenous application of routing models in a single river network. For example, hydrologic models - such as Muskingum Cunge - may be more appropriate for low-order headwater streams where backwater conditions have minimal impact on flooding. In contrast, T-Route empowers users to apply computationally intensive hydraulic models, such as the diffusive wave approximation of St. Venant equations, for high-order streams and rivers, where backwater flooding is a significant concern. This flexibility enables users to allocate computational resources precisely where they are needed most, optimizing efficiency.
Expanding its capabilities, T-Route now supports the OGC WaterML 2.0 Surface Hydrology Features (HY_Features) data model, facilitating the management of complex acyclic network connectivity. HY_Features data model provides users with a choice of routing solutions, including Muskingum-Cunge, Diffusive Wave, or Dynamic Wave.
Subject Keywords
Coverage
Temporal
| Start Date: | |
|---|---|
| End Date: |
Content
Additional Metadata
| Name | Value |
|---|---|
| docs_url | https://docs.ciroh.org/docs/products/ngiab/community-nextgen-repos/t-route |
| page_url | https://github.com/CIROH-UA/t-route/ |
Credits
Funding Agencies
This resource was created using funding from the following sources:
| Agency Name | Award Title | Award Number |
|---|---|---|
| National Oceanic and Atmospheric Administration (NOAA), University of Alabama | CIROH: Enabling collaboration through data and model sharing with CUAHSI HydroShare | NA22NWS4320003 to University of Alabama, subaward A23-0266-S001 to Utah State University |
How to Cite
This resource is shared under the Creative Commons Attribution CC BY.
http://creativecommons.org/licenses/by/4.0/
Comments
There are currently no comments
New Comment