Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
This resource contains some files/folders that have non-preferred characters in their name. Show non-conforming files/folders.
This resource contains content types with files that need to be updated to match with metadata changes. Show content type files that need updating.
Authors: |
|
|
---|---|---|
Owners: |
|
This resource does not have an owner who is an active HydroShare user. Contact CUAHSI (help@cuahsi.org) for information on this resource. |
Type: | Resource | |
Storage: | The size of this resource is 1.8 KB | |
Created: | Feb 08, 2023 at 9:37 p.m. | |
Last updated: | Feb 08, 2023 at 9:37 p.m. | |
Citation: | See how to cite this resource |
Sharing Status: | Public |
---|---|
Views: | 573 |
Downloads: | 220 |
+1 Votes: | Be the first one to this. |
Comments: | No comments (yet) |
Abstract
Climate change affects both water resources and agricultural production. With rising temperatures and decreasing summer precipitation, it is expected that agricultural production will be increasingly limited by drought. Where surface- or groundwater resources are available for irrigation, an increase in water withdrawals for irrigation is to be expected. Therefore, quantitative approaches are required to anticipate and manage the expected conflicts related to increased water abstraction for irrigation. This project aims to investigate how agricultural production, water demand for irrigation, runoff and groundwater dynamics are affected by future climate change and how climate change impacts combined with changes in agricultural water use affect groundwater dynamics. To answer these research questions, a comprehensive, loosely coupled model approach was developed, combining models from three disciplines: an agricultural plant growth model, a hydrological model and a hydrogeological model. The model coupling was implemented and tested for an agricultural area located in Switzerland in which groundwater plays a significant role in providing irrigation water. Our suggested modelling approach can be easily adapted to other areas. The model results show that yield changes are driven by drought limitations and rising temperatures. However, an increase in yield may be realized with an increase in irrigation. Simulation results show that the water requirement for irrigation without climate protection (RCP8.5) could increase by 40% by the end of the century with an unchanged growing season and by up to 80% with varietal adaptations. With climate change mitigation (RCP2.6) the increase in water demand for irrigation would be limited to 7%. The increase in irrigation (+12 mm) and the summer decrease in recharge rates (similar to 20 mm/month) with decreasing summer precipitation causes a lowering of groundwater levels (40 mm) in the area in the late summer and autumn. This impact may be accentuated by an intensification of irrigation and reduced by extensification. (C) 2021 The Authors. Published by Elsevier B.V.
Subject Keywords
Coverage
Spatial
Content
Additional Metadata
Name | Value |
---|---|
DOI | 10.1016/j.scitotenv.2021.148759 |
Depth | |
Scale | 11 - 101 km² |
Layers | 1 |
Purpose | Groundwater resources;Climate change |
GroMoPo_ID | 454 |
IsVerified | True |
Model Code | Feflow |
Model Link | https://doi.org/10.1016/j.scitotenv.2021.148759 |
Model Time | 2010-2016 |
Model Year | 2021 |
Model Authors | Cochand, F; Brunner, P; Hunkeler, D; Rossler, O; Holzkamper, A |
Model Country | Switzerland |
Data Available | Report/paper only |
Developer Email | fabien.cochand@gmail.com; philip.brunner@unine.ch; daniel.hunkeler@unine.ch; roessler@bafg.de; annelie.holzkaemper@agroscope.admin.ch |
Dominant Geology | Unconsolidated sediments |
Developer Country | Switzerland; Germany |
Publication Title | Cross-sphere modelling to evaluate impacts of climate and land management changes on groundwater resources |
Original Developer | No |
Additional Information | |
Integration or Coupling | Surface water;Land surface model’ |
Evaluation or Calibration | Dynamic water levels |
Geologic Data Availability | No |
How to Cite
This resource is shared under the Creative Commons Attribution CC BY.
http://creativecommons.org/licenses/by/4.0/
Comments
There are currently no comments
New Comment