Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...

Renewable water: Direct contact membrane distillation coupled with solar ponds


Authors:
Owners: This resource does not have an owner who is an active HydroShare user. Contact CUAHSI (help@cuahsi.org) for information on this resource.
Type: Resource
Storage: The size of this resource is 2.3 MB
Created: Mar 31, 2018 at 10:49 p.m.
Last updated: Apr 09, 2018 at 8:19 p.m.
Citation: See how to cite this resource
Sharing Status: Public
Views: 6401
Downloads: 1720
+1 Votes: Be the first one to 
 this.
Comments: No comments (yet)

Abstract

Desalination powered by renewable energy sources is an attractive solution to address the worldwide water-shortage problem without contributing significant to greenhouse gas emissions. A promising system for renewable energy desalination is the utilization of low-temperature direct contact membrane distillation (DCMD) driven by a thermal solar energy system, such as a salt-gradient solar pond (SGSP). This investigation presents the first experimental study of fresh water production in a coupled DCMD/SGSP system. The objectives of this work are to determine the experimental fresh water production rates and the energetic requirements of the different components of the system. From the laboratory results, it was found that the coupled DCMD/SGSP system treats approximately six times the water flow treated by a similar system that consisted of an air–gap membrane distillation unit driven by an SGSP. In terms of the energetic requirements, approximately 70% of the heat extracted from the SGSP was utilized to drive thermal desalination and the rest was lost in different locations of the system. In the membrane module, only half of the useful heat was actually used to transport water across the membrane and the remainder was lost by conduction in the membrane. It was also found that by reducing heat losses throughout the system would yield higher water fluxes, pointing out the need to improve the efficiency throughout the DCMD/SGSP coupled system. Therefore, further investigation of membrane properties, insulation of the system, or optimal design of the solar pond must be addressed in the future.

Raw project data is available by contacting ctemps@unr.edu

Subject Keywords

Content

How to Cite

Suarez, F. (2018). Renewable water: Direct contact membrane distillation coupled with solar ponds, HydroShare, http://www.hydroshare.org/resource/620362ace2384ef2979e7596df67ba87

This resource is shared under the Creative Commons Attribution CC BY.

http://creativecommons.org/licenses/by/4.0/
CC-BY

Comments

There are currently no comments

New Comment

required