Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...

Observations of bedload transport in a gravel bed river during high flow using fiber-optic DTS methods.


Authors:
Owners: This resource does not have an owner who is an active HydroShare user. Contact CUAHSI (help@cuahsi.org) for information on this resource.
Type: Resource
Storage: The size of this resource is 0 bytes
Created: Dec 29, 2017 at 8:35 p.m.
Last updated: Apr 09, 2018 at 8:55 p.m.
Citation: See how to cite this resource
Sharing Status: Public
Views: 1865
Downloads: 36
+1 Votes: Be the first one to 
 this.
Comments: No comments (yet)

Abstract

The question: ‘how does a streambed change over a minor flood?’ does not have a clear answer due to lack of measurement methods during high flows. We investigate bedload transport and disentrainment during a 1.5-year flood by linking field measurements using fiber optic distributed temperature sensing (DTS) cable with sediment transport theory and an existing explicit analytical solution to predict depth of sediment deposition from amplitude and phase changes of the diurnal near-bed pore-water temperature. The method facilitates the study of gravel transport by using near-bed temperature time series to estimate rates of sediment deposition continuously over the duration of a high flow event coinciding with bar formation. The observations indicate that all gravel and cobble particles present were transported along the riffle at a relatively low Shields Number for the median particle size, and were re-deposited on the lee side of the bar at rates that varied over time during a constant flow. Approximately 1–6% of the bed was predicted to be mobile during the 1.5-year flood, indicating that large inactive regions of the bed, particularly between riffles, persist between years despite field observations of narrow zones of local transport and bar growth on the order ~3–5 times the median particle size. In contrast, during a seven-year flood approximately 8–55% of the bed was predicted to become mobile, indicating that the continuous along-stream mobility required to mobilize coarse gravel through long pools and downstream to the next riffle is infrequent. Copyright © 2017 John Wiley & Sons, Ltd.

Raw project data is available by contacting ctemps@unr.edu

Subject Keywords

Content

How to Cite

Bray, E. (2018). Observations of bedload transport in a gravel bed river during high flow using fiber-optic DTS methods., HydroShare, http://www.hydroshare.org/resource/648a3c01170f4133b558cd42130d6ad2

This resource is shared under the Creative Commons Attribution CC BY.

http://creativecommons.org/licenses/by/4.0/
CC-BY

Comments

There are currently no comments

New Comment

required