Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
This resource contains some files/folders that have non-preferred characters in their name. Show non-conforming files/folders.
This resource contains content types with files that need to be updated to match with metadata changes. Show content type files that need updating.
Evaluation of Precipitation and Temperature: An Analysis of In-Situ Observations Versus Gridded Data within the Great Salt Lake Basin
Authors: |
|
|
---|---|---|
Owners: |
|
This resource does not have an owner who is an active HydroShare user. Contact CUAHSI (help@cuahsi.org) for information on this resource. |
Type: | Resource | |
Storage: | The size of this resource is 77.2 MB | |
Created: | Apr 20, 2024 at 5:44 a.m. | |
Last updated: | Nov 13, 2024 at 9:09 p.m. | |
Citation: | See how to cite this resource |
Sharing Status: | Public |
---|---|
Views: | 437 |
Downloads: | 177 |
+1 Votes: | Be the first one to this. |
Comments: | No comments (yet) |
Abstract
This study presents a comprehensive comparison of gridded datasets for the Great Salt Lake (GSL) basin, focusing on precipitation and temperature as the main inputs for hydrological balances. The evaluated gridded datasets include PRISM, DAYMET, GRIDMET, NLDAS-2, and CONUS404, with in-situ data used for assessing alignment and accuracy. Key metrics such as Nash-Sutcliffe Efficiency (NSE), Kling-Gupta Efficiency (KGE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Correlation Coefficient (CC) were employed to evaluate gridded dataset performance. Spatial and temporal accuracy analyses were conducted across different GSL basin regions to understand variations in accuracy. DAYMET emerged as the leading dataset for precipitation across most metrics, demonstrating consistent performance. For temperature, GRIDMET and PRISM ranked higher, indicating better representation of temperature patterns in the GSL basin. Spatial analysis revealed variability in accuracy for both temperature and precipitation data, emphasizing the importance of selecting suitable datasets for different regions to enhance overall accuracy. The insights from this study can inform environmental forecasting and water resource management in the GSL basin, assisting researchers and decision-makers in choosing reliable gridded datasets for hydrological studies.
Subject Keywords
Coverage
Spatial
Temporal
Start Date: | |
---|---|
End Date: |
Content
How to Cite
This resource is shared under the Creative Commons Attribution CC BY.
http://creativecommons.org/licenses/by/4.0/
Comments
There are currently no comments
New Comment