Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
This resource contains some files/folders that have non-preferred characters in their name. Show non-conforming files/folders.
This resource contains content types with files that need to be updated to match with metadata changes. Show content type files that need updating.
Authors: |
|
|
---|---|---|
Owners: |
|
This resource does not have an owner who is an active HydroShare user. Contact CUAHSI (help@cuahsi.org) for information on this resource. |
Type: | Resource | |
Storage: | The size of this resource is 16.2 MB | |
Created: | Feb 28, 2024 at 7:06 p.m. | |
Last updated: | May 01, 2024 at 5:14 p.m. | |
Citation: | See how to cite this resource |
Sharing Status: | Public |
---|---|
Views: | 328 |
Downloads: | 14 |
+1 Votes: | Be the first one to this. |
Comments: | No comments (yet) |
Abstract
Civil infrastructure underpins urban receipts of food, energy, and water (FEW) produced in distant watersheds. In this study, we map flows of FEW goods from watersheds of the contiguous United States to major population centers and highlight the critical infrastructure that supports FEW flows. To do this, we draw upon detailed records of agriculture, electricity, and public water supply production and couple them with commodity flow and infrastructure information. We also compare the flows of virtual water embedded in food and energy commodity flows with physical water flows in inter-basin water transfer projects around the country. We found that the virtual blue water transfers through crops and electricity to major US cities was 53 billion and 8 billion m3 in 2017, respectively, while physical interbasin water transfers for crops, electricity, and public supply water averaged 20.8 billion m3. Highways are the primary infrastructure used to import virtual water associated with food and fuel into cities, although waterways and railways are most utilized for long-distance transport. All of the 204 watersheds in the contiguous US support the food, energy, and/or water supplies of major US cities, with dependencies stretching far beyond each city’s borders. Still, most cities source the majority of their FEW and embedded water resources from nearby watersheds. Infrastructure such as water supply dams and inland ports serve as important buffers for both local and supply-chain sourced water stress. These findings can inform efforts to reduce water resources and infrastructure risks in domestic supply chains.
Subject Keywords
Coverage
Spatial
Temporal
Start Date: | |
---|---|
End Date: |
Content
How to Cite
This resource is shared under the Creative Commons Attribution CC BY.
http://creativecommons.org/licenses/by/4.0/
Comments
There are currently no comments
New Comment