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Introduction and Overview	
 

The work reported here represents a fundamental building block of a larger NSF-funded project1 that 
attempts to build the human and research infrastructure needed to understand and tackle the challenges of 
water sustainability in Utah now and in the future. A major emphasis of this larger project is the 
integration of both ecohydrologic and social science research to understand the complexities of water 
dynamics in urbanizing watersheds located within arid climatic regions. Our study area includes three 
neighboring watersheds representing a gradient of urbanization intensity, from relatively pristine montane 
slopes, to agriculture-dominated rural areas, to the heart of urban Salt Lake City.  

In order to design an effective social and biophysical instrumentation network along this gradient, it was 
necessary to identify distinctive socio-ecohydrologic contexts that are meaningful and measurable 
expressions of the diverse ways humans occupy this landscape.  

The project described here seeks to develop a typology of neighborhoods that would reflect combinations 
of measurable attributes that we expect will link a range of urban characteristics (biophysical context, 
built environment and sociodemographics) to core water system outcomes of interest to the iUTAH 
project (water use, water balance, water quality). The typology will be used to identify a subset of 
neighborhoods that can serve as locations for detailed instrumentation and further coordinated data 
collection on coupled social, engineering, biophysical, and ecological processes and outcomes. 

The draft urban socio-ecohydrology typology presented in this document was constructed using a wide 
range of data aggregated at the level of Census Block Groups (CBGs) across the Wasatch Range 
Metropolitan Area (WRMA2). CBGs are geographic areas created by the US Census and approximate 
‘neighborhoods’ in most urban settings. Only CBGs with population densities over 100 persons per 
square mile3 were included in our typology.  

A total of 48 independent variables were measured in each CBG, and a two-stage process involving factor 
and cluster analysis was used to identify distinctive combinations of land cover, land use, built 
environment, household structure, socioeconomic status, water infrastructure, policy, and climate 
characteristics. Variables used in the typology classification were selected because they represented 
characteristics of socio-ecohydrologic contexts that have been linked to particular patterns of water use, 
evapotranspiration, groundwater recharge, and surface water flows and fluxes. Over time, we will use the 
typology to explore the impacts of urban form on this suite of hydrologic outcomes and the ecosystem 
services that are driven by flows and fluxes of water in the urban landscape. 

Research Questions 

The urban typology was developed to help address several of the core research goals and questions that 
are presented in the iUTAH Strategic Plan.  Specifically, we were interested in developing a systematic 
and empirically grounded typology of urban forms that could be used to help answer some of iUTAH’s 
broad research questions, including: 

                                                      
1 An EPSCoR Track 1 award that began in 2012 and is titled the Innovative Urban Transitions and 
Aridregion Hydrosustainability or “iUTAH” project (see iutahepscor.org). 
2 The WRMA was defined as a 10 county area in northern Utah that included: Cache, Box Elder, Weber, 
Davis, Morgan, Salt Lake, Tooele, Utah, Summit, and Wasatch counties. 
3 Population density was calculated using 2010 census reports and are adjusted to reflect only the non-
federal lands, non-water areas within each CBG. 
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 How do different urban forms impact water system processes and outcomes (including urban 
water balances and water quality)? 

 Which aspects of urban forms most affect water outcomes? 
 How do urban forms, policy contexts, built water infrastructure, climate conditions, and 

management decisions by local actors interact to explain variation in water use? 

The urban typology is an empirical approach to classifying the urban landscape based on traits that have 
been linked to water outcomes.  As we refined our methods, we were guided by three focused research 
questions: 

 What social, built, and natural aspects of urban environments have been linked to a range of water 
system outcomes in previous research? 

 What measures exist for these key attributes across all urban neighborhoods in the entire WRMA 
region? 

 Can a statistical typology be developed for the WRMA that would reflect distinct combinations of 
measurable attributes that link urban characteristics and water system outcomes? 

 How well does this statistical urban form typology fit with local understandings of neighborhood 
boundaries? 
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Literature Review 
 

Urban Studies:  

The neighborhood typology can be traced back to early urban geography and sociology studies on the 
population composition in urban settings.  Many decades ago, “social area analysis” was a hot topic.  
After the first few studies, Hawley and Duncan (1957) asked three basic questions about social area 
analysis that are still relevant to our task: What is a social area? (or, what is the neighborhood?) What is 
the nature of the social area that have been identified empirically in the writings? What theoretical 
justification is there for social area analysis as a method of studying the differentiation of areas in a city? 

Duany and Talen (2002) developed a neighborhood typology that they called urban transect planning.  
The transect is a cross-section of a city that shows a set of neighborhoods that vary by their level and 
intensity of urban character.  The result is a continuum that ranges from rural to urban. In transect 
planning, the range of neighborhoods is the basis for organizing the components of the built world: 
building, lot, land use, street, and all of the other physical elements of the urban environment. 

The continuum crosses six different “ecozones” where they use the term ecozone to promote the link to 
natural ecologies. Rural Preserve; Rural Reserve; Sub-Urban; General Urban; Urban Center; Urban Core 

Although a persuasive and intuitive tool for modeling, analysis, and policy development, transects present 
technical challenges, including boundary issues and selection of appropriately scaled units of analysis 
(Shay and Khattak 2007).  For example, where does general urban end and urban center begin?  

Shay and Khattak (2007) applied a neighborhood typology to understand how the built environment 
affects auto ownership and travel.  Their methodology to create neighborhood typologies is widely 
accepted and is similar to the path we follow below. The key steps these researchers employed were 
identification of relevant attributes of physical form, such as street design, density, land use mix, access, 
transport alternatives, natural environmental features, and socioeconomic characteristics; Factor analysis 
of the raw measures to derive major dimensions; and cluster analysis to group those neighborhoods that 
are most similar in terms of the factors.  

For step one, these researchers used 34 direct measures of the built environment, chosen based on the 
literature as well as availability of data.  Data were collected at the block group level. Factor analysis 
reduced their variables to five factors, and then the cluster analysis yielded eight neighborhood types, or 
clusters, so that variation is minimized within clusters and maximized between clusters. 

Water Research 

Water use and water demand 

In the best literature review of water demand modeling to date, House-Peters and Chang (2012) review 
published articles on water use with a focus on variables that affect water use.  In this review are key 
insights for the determinants of water use at the neighborhood scale and developing typologies.  

The most frequently utilized scale to operationalize neighborhoods are the census block group and the 
census tract.  Water consumption has been studied at the census block group scale (Chang et al., 
2010; House-Peters et al., 2010) and at the census tract scale (Guhathakurta and Gober, 2007; Wentz and 
Gober, 2007; Balling et al., 2008). The goal is to identify neighborhoods that exhibit more or less 
sensitivity to variations in climate than average (Guhathakurta and Gober, 2007; Balling et al., 2008; 
House-Peters et al., 2010).   
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Larson, et al. (2013) also examined water use at the neighborhood level using census block groups.  At 
the neighborhood the determinants of water demand (such as household and property attributes) often 
operate to influence locally differentiated rates of consumption (Aitken et al. 1991). Few water demand 
studies have been carried out at the neighborhood scale, which we define by census block groups (Larson 
et al. 2013).  Water demand was aggregated by the City of Phoenix at the Census Block Group level and 
only examined single-family residences.   

Urban hydrology 

Urban environments significantly affect the hydrological processes in water and sediment flows because 
of changes in impervious land area (Paul and Meyer 2001; Arnold and Gibbons 1996; Alberti 2005).  The 
reason is because urban development, through land conversion to impervious surfaces, reduces infiltration 
rates, and creates impervious surfaces that accelerate runoff rates (Sanders 1986).  Knowing the amount 
of impervious surface is therefore useful to predict infiltration and runoff rates in urban neighborhoods.  

Changes in land cover from natural wetlands to impervious surfaces also has significant effects.  
Following the conversion of wetlands to impervious surface, researchers have found changes in 
hydrologic flows, loss of natural water retention capacity, and increases in flooding (Brody et al. 2007). 

Variation in the type and density of landscape vegetation not only affects water demand by urban users, 
but also alters the amount and timing of evapotranspiration in urban landscapes (Jenerette et al. 2013, 
Pataki et al. 2013). 

Nitrate, phosphate and sediment pollution from runoff are challenging non-point sources of pollution 
greatly influenced by impervious surface and stormwater runoff from cities.  The amount of each of these 
pollutants in stormwater runoff is dependent on the amount of impervious surface and the plant 
composition in urban landscapes and nitrate conversion of that landscape (Pickett and Cadenasso 2008) 
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Methodology 
 

This study is a cross-sectional, exploratory research design.  Our methodology included three steps.  The 
first step was data collection.  The census block group (CBG) was our unit of analysis for the typology.  
Data was collected for every census block group along the Wasatch Front Metropolitan Area, and where 
necessary was aggregated to the CBG level.  These variables collected are described in the Measures 
section.  Our second step was to conduct a factor analysis to identify commonalities between the 
variables.  The third step was to conduct a cluster analysis to identify CBGs that were closely correlated 
according to the factor analysis results, as well as those that were not correlated at all.  Both of these 
statistical analyses are described in the Analysis section. 

Study Site and Units of Analysis 
 

The demography in Utah is unique compared to other states in the U.S. Utah has the third largest 
population growth rate in 2011, 1.9 percent vs. 0.9 percent countrywide (US Census Bureau, 2011). Utah 
has the largest average household size in 2010, the only state in the U.S that has more than 3 people per 
household in average. Sixty-one percent of households in Utah are married husband-wife couple 
households, which is also the highest in the country. Utah also has the lowest percentages of households 
with a person 65 years or older (Lofquist, Lugaila, O’Connell and Feliz, 2012).  In sum, Utah has the 
population with fast growth rate, large family size, and fewer elderly people, which results in a unique 
demography.  

The majority of the population lives along the Wasatch Range Metropolitan Area (WRMA), a 10 county 
strip of land running north and south for approximately 160 miles along the Wasatch Mountain Range.  
Salt Lake City is the capital city, and centrally located in the WRMA.  The population of the WRMA is 
expected to reach a population of 2 million by 2040 with the majority located in Salt Lake County 
(Woods and Poole Economics 2009). 

Water resource management is a central challenge throughout Utah. Utah ranks 49th in the US according 
annual precipitation but 2nd in the US according to per-capita water use (UDWR 2010).  Utah’s major 
metropolitan hub, Salt Lake City, has effective rainfall during the growing season equivalent to other 
major urban areas in the desert southwest, including Phoenix and Albuquerque (UDWR 2009; UDWR 
2010). Salt Lake City’s water supply system is fed by surface water from the nearby mountains and from 
deep wells tapping groundwater (US EPA, 2010). The Utah Division of Water Resources predicts that 
urban demand will soon outstrip this supply system.  

Similar to previous work in this area (Shay and Khattak 2007), we utilized the census block group as the 
unit of analysis for our project.  Census block groups (CBGs) represent officially recognized geographic 
areas that approximate actual neighborhood boundaries in most urban areas.  We selected CBGs for this 
analysis based on population density.  Because this region contains significant federal land (where human 
occupation is generally not allowed) and several large water bodies (most notably, the Great Salt Lake), 
we used geospatial information about federal land ownership and water bodies to exclude these from the 
official TIGER CBG boundary areas.  We then estimated an adjusted population density variable based 
on the ratio of total CBG population to the non-federal, non-water area.  We then excluded all census 
block groups whose adjusted population density was less than 100 persons per square mile.  The 10-
county WRMA study area is comprised of 1,457 CBGs.  A total of 1,384 CBGs had adjusted population 
densities above 100 persons per square mile.  A map of these urban CBGs is shown in Figure 1.   
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Figure 1: Study area in red: census block groups in Northern Utah with adjusted population densities over 
100 persons per square mile. 
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Measures 
 

In this section, we present the complete list of variables used in our typology analysis.  For each variable, 
we justify the variable’s inclusion in the analysis by reporting previous work that has identified 
relationships to relevant water outcomes.  All variables describe characteristics of a Census Block Group 
(CBG) as described above.  Variables were collected to cover 8 major topics: 

 Land cover 
 Land use 
 Biophysical context/microclimate 
 Built environment 
 Housing characteristics 
 Household characteristics 
 Individual characteristics 
 Public water system attributes 

Complete data were obtained for 1,350 census block groups.  Table 1. summarizes the complete list of 
variables used, and the sections following the table provide justifications and further detail on how each 
variable was calcuated.   
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Table 1. Variables included in typology analysis.  

Category Label Description 
Variable 
name Source 

LAND COVER % Impervious Surface 

Average CBG Impervious Surface Cover.  Derived from National 
Land Cover Dataset (NLCD) which reports cover per 30m pixel in 
10% bins.  Averaged across all pixels in the CBG using ArcGIS 
"Zonal Statistics" geoprocessing tool. LC_ImSu 

National Land Cover Dataset 
(30m pixels) 

% Tree Cover 

Average CBG percent tree cover.  Derived from rasterized MODIS 
VCF data (~250m pixels).  Average value calculated using ArcGIS 
Zonal Statistics too. LC_TrCv Modis VCF (250m pixels) 

Greeness (NDVI) 
Average NDVI score based on LandSat5 raster imagery (30 m 
pixels) obtained from flyover of region in July 2006 and 2007 LC_Green Landsat 5 

LAND USE % Parks 
Percent of CBG in local, city or state parks.  Based on merger of 
data from AGRC and ESRI.  LU_Park 

ESRI and AGRC park layers 
(combined) 

% Residential 

Percent area of residential land use (based on AGRC Water Related 
Land Use - WRLU – layer divided by total CBG land area (excluding 
fed lands and water) LU_pcRES 

Water Related Land Use 
dataset (UT Div of Water 
Resources) 

% Commercial / 
Industrial Percent area in commercial or industrial land use (WRLU) LU_pcCOM same 

% Urban Open Spaces

Percent area in urban open space or parks (based on reported 
WRLU data); more expansive definition than AGRC/ESRI (above) 
and captures golf courses and public open spaces associated with 
schools, universities, etc. LU_pcOSp same 

% Irrigated Agriculture Percent area in irrigated agricultural land uses (WRLU). LU_pcIRR same 
% Non-Irrigated 
Agriculture 

Percent area in non-irrigated agricultural land uses (WRLU; includes 
subirrigated land) LU_pcNI same 

% Farmsteads 
Percent area in 'farmstead' land use uses - residential parcel on 
farm properties LU_pcFST same 

Land Use Entropy 
Index (WRLU) 

Index of land use diversity in CBG - Inverse Simpson Index for all 
WRLU categories LU_LuEn same 

BIOPHYSICAL 
CONTEXT Avg summer temp mean monthly max for June, July, Aug of 2010-2012 CL_MSumT PRIZM data 

Avg summer precip mean monthly max for June, July, Aug of 2010-2012 CL_MSumP same 

Avg annual temp mean monthly max for all months, 2010-2012 CL_MAnnT same 

Avg annual precip mean monthly max for all months, 2010-2012 CL_MAnnP same 

Mean Elevation mean elevation of rasters CL_AvgEL DEMs from AGRC 
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Table 1. Variables included in typology analysis (continued) 

Category Label Description 

Variable 
name Source 

BUILT 
ENVIRONMENT Housing Density 

Overall housing density: housing units / total area (excluding federal 
lands and water) BE_HDen 2010 Census of Population 

 
Residential Housing 
Density (logged) 

Natural log of Residential Housing Density (# housing units/area of 
residential land use) BE_HDnRL Census and WRLU 

Average Parcel Size Mean parcel size in CBG (in sq m) - based on AGRC parcel maps BE_AvPcl AGRC county parcel maps 

Median Parcel Size Median parcel size in CBG (in sq m) - based on AGRC parcel maps BE_MdPcl same 

Average Block Size 

Mean street block length by CBG (in meters), based on AGRC 
Statewide Roads data. Excludes freeways, U.S. and State 
highways, and trails BE_AvBlk AGRC Utah road layer 

Median Block Size 

Median street block length by CBG (in meters), based on AGRC 
Statewide Roads data. Excludes freeways, U.S. and State 
highways, and trails BE_MdBlk Same 

Intersection Density Number of intersections per land area BE_InDen Same 
% 4-Way 
Intersections Percent of road intersections that are 4-way configurations. BE_Pct4w Same 

HOUSING UNIT 
CHARACTERISTICS 

Percent Vacant 
Housing Units Percent of housing units that were not occupied in 2010 HU_PcVHU 2010 Census of Population 
Percent renter 
occupied 

Percent of occupied housing units that were occupied by renters 
2010 HU_PcRHU Same 

Percent housing units 
that are detached 
single family homes Percent housing units that are detached single family homes  HU_PDSFH 

American Community Survey 
(2006-2010 5-year) 

Percent of Housing 
Built Since 1990 Percent of Housing Built Since 1990  HU_PHU90 Same 
Median year structure 
built Median year structure built  HU_MdHYr Same 
Median number of 
rooms Median number of rooms  HU_MdRms Same 
Median housing value 
(dollars) Median housing value  HU_MdHVa Same 
Percent housing units 
that are mobile homes Percent housing units that are mobile homes  HU_PcMbH Same 
Diversity of 
Building/Housing 
Types 

Index of diversity of housing types; Value of Inverse Simpsons Index 
calculated using census housing categories in ACS table # B25024 BE_HuDiv Same 
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Table 1. Variables included in typology analysis (continued) 

Category Label Description 

Variable 
name Source 

HOUSEHOLD 
CHARACTERISTICS Mean HH Size Average household size reported in US Census HC_HHSz 2010 Census of Population 

Percent HHs that are 
Family HHs 

Percent of households that are family households (group of 2 or 
more people related by birth, marriage, or adoption and residing 
together) HC_PcFHH Same 

Working adults per 
occupied housing unit Resident workers in CBG / number of occupied housing units EE_JHBal US BLS and 2010 Census 

DEMOGRAPHICS Population Density  Persons per square mile (excluding federal lands and water) DM_PDen 2010 Census of Population 
Residential 
Population Density 
(logged) 

Natural log of residential population density (population/area of 
residential LU), with asymptotically high values recoded to 5 and 
very low values coded to 0 BE_RDnLg US Census & WRLU 

Median age: Both 
sexes Median age of population DM_MdAge 2010 Census of Population 
Percent of population 
over 65 Percent of population over 65 years old DM_PcO65 Same 
Percent of population 
Non-Hispanic White Percent of population that are non-hispanic whites DM_PcWht Same 
Percent adults with 
BS or higher ed Percent of adults over 25 with BS or higher education level DM_PcBS 

American Community Survey 
(2006-2010 5-year) 

Percent Households 
with income > 100K Percent of households reporting total income over $100,000 DM_P100K Same 
Median Household 
income (est) Median household income DM_MdHHI Same 
Per Capita Income 
(est) Per capital income DM_PCI Same 
Estimated Poverty 
Rate Estimated individual poverty rate DM_PovRt Same 

PUBLIC WATER 
SYSTEM 

% parcels Served by 
Public Water Supplier

Percent of county parcels in CBG that are inside public community 
water system service areas WI_PcPWS 

AGRC parcel maps & Utah 
Div of Water Resources 
PCWS coverage 
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Land Cover:  

We use three measures of land cover, the percent of impervious surface, the percent tree cover for all 
CBGs, and the NDVI greenness measure. The first two of these measures are derived from the National 
Land Cover Database (NLCD) for 2006.  Tree cover and impervious surface area have been used in 
quantitative methods of classifying neighborhoods (Song and Knapp 2004) and have been found to be an 
important determinate for water demand in Pheonix (Larson et al. 2013) and urban hydrologic processes 
(Paul and Meyer 2001; Arnold and Gibbons 1996; Alberti 2005).  

For the percent of impervious cover, we averaged the amount of impervious area across all pixels in the 
CBG using the ArcGIS zonal statistics geoprocessing tool.   

For percent of tree cover, we used the mean value by rasterized CBG, from the MODIS VCF data at 
250m pixels. 

The Normalized Difference Vegetation Index (NDVI) is derived from remotely sensed multispectral 
imagery.  NDVI can be calculated from publicly available Landsat remote sensing data at the 30 m 
resolution. Specifically, NDVI is computed as: 

 

where NIR is reflectance in the near-infrared band and R is reflectance in the red band. NDVI of 
vegetated surfaces ranges between 0 and 1, and is strongly correlated with the abundance of healthy 
vegetation canopy (Rouse, Haas, Schell, & Deering, 1974).  

We estimated an average NDVI value for each census block group in the study area.  We obtained data at 
30m resolution for our study area from a global composite image service served by ESRI at 
arcgisonline.com (ESRI, 2014).  Nominal 2005 NDVI in the ESRI data product is computed from the 
USGS/NASA Global Land Survey (GLS) 2005-epoch collection of Landsat ETM+ image tiles; we chose 
the 2005 epoch to most closely match the 2006 conditions reflected in land cover variables derived from 
the National Land Cover Database (NLCD) data. Imagery coverage in the 2005 GLS for the southern part 
of our study area was acquired by the Landsat 5 TM sensor on 22 June 2006 (USGS, 2014a) and for the 
northern part of our study area by the Landsat 7 ETM+ sensor on 03 July 2007 (USGS, 2014b). We 
transformed ESRI data from their [0,255] range as served, to the native [-1,1] range of the NDVI. We 
then reclassified the data to eliminate all pixels with negative values, which are typical of clouds, snow, 
and surface water, and computed the mean of the surviving pixel values for each CBG in the study area. 
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Land Use:  

Land use patterns are important drivers of a wide range of ecohydrologic processes along the rural-to-
urban gradient. Different land uses have significantly different water outcomes.  For example, across the 
globe, as well as in the WRMA, agriculture is the number one user of water.  Runoff, and infiltration also 
differ across land uses, where an agricultural field will differ substantially from an industrial park.  These 
measures are crucial to differentiate neighborhoods.   

In the urban and urbanizing areas along the WRMA, residential land use dominates, but there can be 
significant areas devoted to parks and opens spaces, commercial/industrial uses, and (at the rural/urban 
fringe) irrigated and non-irrigated agriculture (Table 2).   

The typology utilizes eight measures of land use; percent of and area in designated urban parks; percent 
residential; percent commercial/industrial; percent in urban open and green spaces; percent irrigated 
agriculture; percent non-irrigated agriculture; percent farmsteads; and an overall measure of land use 
diversity (using an entropy index).   

 Parks: The first land use indicator combined geospatial information about designated parks and 
recreation sites obtained from the national ESRI parks layer and spatial data on the locations of 
Utah parks that were obtained from the state AGRC spatial data archive 
(http://gis.utah.gov/data/). 

 Other Land Uses: All the remaining land use measures were derived from the Water Related 
Land Use (WRLU) data set developed by the Utah Division of Water Resources and made 
available at the AGRC website.  WRLU data from the 2005-2010 period were downloaded and 
processed to remove a few minor geometric errors, then clipped to the urban CBG boundaries 
used in the typology analysis.  For each CBG, the area and percent of each reported land use class 
was calculated.  To address problems with model specification and increase the efficiency of 
statistical estimates, our final analysis excluded areas in the WRLU categories of ‘riparian’ or 
‘unclassified’ land uses (which each reflect relatively small proportions of the urban CBG area in 
the WRMA).  The locations of urban parks and open space in the WRLU dataset were 
significantly more detailed and accurate than (and only lightly overlapped with) the ESRI/AGRC 
parks layer noted above – mainly because the WRLU urban open space layer captured 
institutional lawns, school yards and golf courses.  

 For the land use entropy index, we calculated the inverse Simpson index on each of the WRLU 
land categories.  The index represents the weighted arithmetic mean of the proportional 
abundances of the types of interest, and large values represent situations where diversity is 
greater.  The index is calculated using the following formula, where R = the number of potential 
categories and p = the proportion of land area in each category:   

 

Across the 1,384 census block groups for which we have complete data in the WRMA study area, the 
most common land use involved residential housing (roughly 37% of the total study area, and  60% of a 
census block group area on average). 
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Table 2: Land Use Characteristics of Urban Census Block Groups in WRMA. 

Water‐Related Land Use 
Category 

Mean 
CBG 

Median 
CBG

Minimum 
CBG

Maximum 
CBG

Total 
Combined 
Area (km2) 

% total 
urban 
WRMA

Residential  60.7%  66.6% 0.0% 100.0%
   

1,001.2   37.3%

Commercial/Industrial  14.8%  7.1% 0.0% 100.0%
   

401.7   15.0%

Urban Open Space  4.2%  1.6% 0.0% 62.7%
   

88.9   3.3%

Irrigated Agriculture  6.3%  0.0% 0.0% 84.1%
   

613.6   22.9%

Non‐Irrigated Agriculture  4.9%  0.5% 0.0% 65.0%
   

403.9   15.0%

Farmsteads  0.6%  0.0% 0.0% 19.6%
   

45.4   1.7%

Riparian Areas  1.4%  0.0% 0.0% 55.7%
   

129.6   4.8%

       

Land Use Diversity Index  0.414  0.448 0.000 0.838

 

  



15 
 

Biophysical Context/Micro-climate 

Weather is a significant factor in residential water demand. In the summer months as temperatures rise, 
gardens dry out and households increase outdoor water use (Abrams 2011; Worthington 2011). Studies of 
water use during the summer months have seen increases in water use of 30% to 40% (Kenney 2008; 
Cavanagh et al. 2002; Guhathakurta 2007). For example, a study in in Phoenix (Guhathakurta 2007) 
found that two-thirds of residential water use was for outdoor irrigation use during the summer. Balling 
(2007) found that 40% of annual water use occurs during June, July, August, and September. Despite the 
seasonal fluctuations in residential water demand there are few studies that determine elasticities for 
variables on a seasonal basis, despite the fact that significant differences may exist (Lyman 1992; 
Bowman et al. 1997; Polebitski and Palmer 2010). 

Differences in regional climate affect water demand.  Residents in arid regions with warmer temperatures, 
less rainfall, and greater rates of evapotranspiration in the growing season use significantly more water on 
a per capita basis than those in more humid regions.  In most cities in the Western United States, the 
majority of residential water use is for outdoor irrigation use during the summer (Balling 2007, 
Guhathakurta 2007).  Similar differences in microclimate related to elevation, topography, proximity to 
open space, or the impacts of urban heat islands can also lead to variation in water demand within urban 
areas (Nouri et al 2013; Whitlow, Bassuk and Riechert 1992). 

We use five measures of climate for our analysis: average summer temperature, average summer 
precipitation, average annual temperature, average annual precipitation,  average annual precipitation, and 
elevation.  The summer climate measurements are mean monthly for June, July, and August for three 
years, 2010-2012. The annual measurements are based on mean monthly maximums for all months 2010-
2012.  These measures are derived from the PRISM Climate Group climate database.  This database that 
uses point data and an underlying grid such as a digital elevation model (DEM) to generate gridded 
estimates of monthly and annual precipitation and temperature.  The climate in the WRMA region varies 
from north to south, as well as with changes in elevation.  We therefore expect that CBGs with higher 
average summer temperatures, and lower summer precipitation will use a greater amount of water.  
Finally, elevation was included because of the diversity of elevations throughout our study area, and 
elevation has a strong impact on climate and weather.  Mean elevation was calculated as the mean 
elevation of rasters from digital elevation maps from AGRC.   

 

Built Environment:  

Our first two measures of the built environment are housing density, and the log of residential housing 
density.  Both measures are estimated using data obtained from the 2010 U.S. population census and the 
WRLU dataset described above.  Housing density is the simple ratio of a county of housing units in a 
CBG divided by the area of the CBG4, and represent the degree to which a neighborhood is residential, 
and the density of housing in the CGB.  

In addition, we used data from county parcel maps (downloaded from the Utah AGRC website in the fall 
2012) to calculate two measures of parcel size at the CBG level: average parcel size and median parcel 
size. Households on large lots, on average, have higher levels of water use (Abrams 2011).  Larger lots 
usually mean larger lawns, more vegetative cover, and larger houses, and therefore lot size has a positive 
correlation with water use (Renwick and Green 2000; Guhathakurta 2007; Balling 2007; Polebitski and 
Palmer 2010; Blokker 2010).  Guhathakurta (2007) found that controlling for other variables, lot size had 

                                                      
4 It is important to note that all density measures used in our analysis utilized an adjusted ‘area’ for the 
CBG that removes any federal lands and open water area. 
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the greatest impact on water use, where with each 1,000 square foot increase in average lot size, monthly 
water use increases by about 1.8%.  Renwick and Green (2000) found that with a 10% increase in lot size 
water demand increases by 2.7%. 

A third indicator of the built environment reflects the configuration of road networks.  We estimated two 
measures of block size based on detailed spatial information about road networks: average block length 
and median block length   CBGs that have higher average and median block size can be expected to 
represent large lot suburban or exurban neighborhoods, or less residential neighborhoods with large 
industrial, commercial, or agricultural parcels.  Conversely, block groups with small average and median 
block size are likely to be more urban, or have a mix of land uses.  Small blocks have been associated 
with higher density urban design while long blocks typify contemporary suburban neighborhoods and can 
be an indicator of sprawl (Ewing 1996).  The water use outcomes associated with neighborhoods typified 
by large blocks, such as sprawling residential neighborhoods, is expected to be different than compact 
neighborhoods likely due to differences in parcel size, associated lawn sizes, and street stormwater 
infrastructure.   

Another characteristic of the urban environment that is shaped by road networks is captured in the density 
and pattern of road intersections  (Ewing and Cervero 2010).  In our analysis we used two measures of 
intersections: intersection density and percentage of 4-way intersections. CBGs that have high 
intersection density are more densely built than CBGs with low intersection density.  Water use outcomes 
would differ between CBGs that are densely built and those that are not, because the amount of 
impervious surface, or the relative concentration of residential and commercial uses will differ. The 
percentage of 4-way intersection CBG’s captures the design of the built environment, where higher 
percentage of 4-way intersections represent a built environment form representative of highly 
interconnected urban grids.  This form contrasts with typical suburban neighborhoods characterized by 
cul-de-sacs and curving streets networks.  Water use outcomes likely vary from suburban neighborhoods 
to urban neighborhoods, and the percentage of 4-way intersections is a measure to differentiate between 
these urban forms.  These variables were calculated from the road network database provided by the 
NAVTEQ company for the state of Utah.  Intersection Density was calculated by the number of 
intersections/area of census block group. The percentage of 4-way intersections were calculated as the 
number of 4 way intersections/ total intersections.   

 

Housing Unit Characteristics: 

Troy et al. (2005) explored the water consumption profiles of households living in different forms of 
residential development in a range of locations across Sydney, Australia. In particular, they sought to 
understand how different types of dwellings – separate houses, semi- detached houses and flats – were 
related to household water use. An overall finding of the research was that the per capita consumption of 
water is, for all practical purposes, the same for people living in traditional houses as it is for those in high 
density dwellings.  However, Stoker & Rothfeder (in review) found that total annual water use for 
buildings in Salt Lake City varies according to building type.   

We obtained nine measures of housing unit characteristics from the US Census Bureau: percent vacant 
housing units, percent renter occupied, percent housing units that are detached single family homes, 
percent of housing built since 1990, median year structure built, median number of rooms, median 
housing value, percent housing units that are mobile homes, and diversity of building housing types.  All 
but the last measure of housing unit characteristics are based on data reported at the CBG-level by the 
U.S. Census Bureau and are based on the American Community Survey – an annual sample survey 
conducted to estimate detailed demographic, economic, and housing characteristics at different levels of 
geography between decennial census years.  The ACS at the CBG level reports a rolling 5-year estimate 
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of each characteristic; in our analysis, we used the 2006-2010 estimate for CBGs in the WRMA. The final 
measure, the diversity of building housing types, was calculated using the inverse simsons index using the 
census housing categories (single family detached, single family non-detached, 2-unit, 3-unit, mobile 
homes, etc.) in the American Community Survey (ACS) table # B25024.  
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Household Characteristics:  

Household size significantly influences water consumption (Gaudin 2006; Wentz and Gober 2007; 
Arbues 2010).  Households with more people use more appliances with greater frequency than smaller 
households. Arbues et al. 2004 found that as household size increases, water use increases, although it is 
not a proportional increase.  For example, a household with two people uses less water than a household 
with four people, but not 50 percent less.  From a review of similar studies, the average elasticity of 
consumption with respect to household size is between 0.734 and 0.868 (Arbues 2004). 

We use three measures of household characteristics, mean household size, percent of households that are 
family households, and average number of working adults per household.  The first two measures were 
obtained from the 2010 U.S. Census, and are reported at the CBG level.  The third measure combines 
2012 estimates of working adults from the US Bureau of Labor Statistics with 2010 Census data on 
household numbers. 

 
Demographics:  

Income has been found to be a significant determinant of urban water use: as with nearly all goods and 
services, as income rises there is a corresponding increase in water usage (Guhathakurta 2007; Ferrara 
2008). Wealthier households are more likely to have water consuming appliances, swimming pools, and 
larger lots (Ferrara 2008). Significant differences in personal water habits in households with different 
incomes have not been found; therefore indoor usage is more of a function of square footage of the 
dwelling and the number of household members (Polebitski and Palmer 2010; Domene and Sauri 2005; 
Ferrara 2008). Where income has its biggest impact is on outdoor water use.   Consequently, income is a 
more significant factor during the summer months as more water is used for irrigation purposes 
(Polebitski and Palmer 2010). 

In order to capture the social and demographic characteristics of CBGs, we use ten measures to describe 
the aggregate demographic attributes of households and individuals in our study area: population density; 
log of residential population density, median age, percent of population of 65, percent of population non-
hispanic white, percent adults with BS or higher education, percent households with income over 
100,000, median household income, per capita income, and estimated poverty rate.  Population density 
was calculated as persons per square mile, not including federal lands and water.  All of these measures 
were obtained from either the 2010 US Census (population density, age, race/ethnicity) or American 
Community Survey estimate for 2006-2010 (education, income, and poverty). The difference between 
population density and residential population density reflects the use of different denominators: total 
density is the number of residents divided by the total area of the CBG; residential density is the total 
resident population divided by the area in residential housing. 

 
Public Water System: 

Previous analysis of water use in Utah suggests that access to a public culinary water supply can shape 
water use rates and behaviors.  Persons living outside of public water service areas rely on wells for their 
drinking water (and either wells or secondary canal systems for irrigation water).  To capture the role of 
public water systems, our final analysis developed a measure of the percent of parcels served by a public 
water supplier.  This measure was calculated based on overlaying a parcel map (obtained by the AGRC) 
on a map of public water supplier service areas provided by the Utah Division of Water Resources.  The 
variable used in the analysis is the percent of AGRC parcels in a CBG that are inside public community 
water system services areas.  This measure will capture the difference between neighborhoods that are 
served by a public water supplier, and those that are not.   
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Analysis: 
 

Our analytic approach to building a typology of urban neighborhoods (represented by CBGs) utilized a 
two-stage process that first identifies sets of underlying dimensions or ‘factors’ that are reflected in the 
patterns of statistical correlation among the many variables used in our study.  Each CBG then grouped 
into similar clusters based on their relative level of each ‘factor’ identified in the first stage.  This two-
stage approach has been commonly used to develop formal statistically-based typologies in other research 
contexts (Shat and Khattak 2007).  These researchers developed a neighborhood typology to understand 
how the built environment affects auto ownership and travel.  Their methodology to create neighborhood 
typologies included: 

1. Identification of relevant attributes of physical form, such as street design, density, land use mix, 
access, transport alternatives, natural environmental features, and socioeconomic characteristics; 

2. Factor analysis of the raw measures to derive major dimensions; and  
3. Cluster analysis to group those neighborhoods that are most similar in terms of the factors.  

For step one, these researchers used 34 direct measures of the built environment, chosen based on the 
literature as well as availability of data.  Data were collected at the block group level. Factor analysis 
reduced their variables to five factors, and then the cluster analysis yielded eight neighborhood types, or 
clusters, so that variation is minimized within clusters and maximized between clusters. 

 

Factor Analysis	
 
The first step in our statistical analysis utilized factor analysis to identify key underlying factors that can 
help reduce the number of variables used to differentiate neighborhoods. A factor analysis uses patterns of 
correlation among diverse variables to identify underlying (unobserved) factors that can account for 
observed variation in these data. In this study we used a principle components method to identify the 
number and initial characteristics of factors, then rotated the factor matrix to obtain orthogonal 
(uncorrelated) factors which best fit the dataset. The process produces a set of factors that each explain a 
significant proportion of the variation (the first principle component selected in the analysis will explain 
the highest variance and each successive factor will be the orthogonal dimension that explains the next 
most variation in the data (Thompson 2004). 
 
Our factor analysis identified a set of 9 distinct factors which together explained 76.4% of the variation 
among the 48 observed variables (Table 3). 
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Table 3: Factor Loadings for all 48 Variables used in Analysis. 
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% housing units detached SF homes  0.933                         

% renter occupied  (‐0.896)                 

Diversity of Building/Housing Types  (‐0.888)                 

% HHs that are Family HHs  0.858          0.279       

Median number of rooms  0.842      0.375           

Log form of BE_HDnRs  (‐0.736)        (‐0.292)    (‐0.437)     

Mean HH Size  0.694          0.613       

Estimated Poverty Rate  (‐0.611)      (‐0.285)    0.201       

Log of residential pop density  (‐0.569)  (‐0.282)  (‐0.205)    (‐0.291)  0.201  (‐0.502)     

Employed adults per household  0.557             0.296          

Avg summer temp    (‐0.930)                      

Avg annual temp    (‐0.888)               

MEAN elevation    0.797    0.331           

Avg annual precip    0.784    0.250    (‐0.249)       

Avg summer precip  0.283  0.748               

%Vacant Housing Units  (‐0.447)  0.549                     

% land in residential land use       (‐0.834)     (‐0.359)             

Land Use Entropy Index (WRLU)      0.776          0.274   

Population Density (nonfed/nonwater)  (‐0.379)    (‐0.768)    (‐0.210)         

Intersection Density    (‐0.230)  (‐0.718)    (‐0.319)    (‐0.234)     

Overall Housing Density  (‐0.579)    (‐0.659)             

% land in Non‐irr Ag      0.483      0.326       

% Tree cover    0.389  (‐0.460)  0.384    (‐0.324)       

% adults with BS or higher ed     0.208     0.818                

Median housing value (dollars)    0.296    0.805           

Per Capita Income (est)    0.319    0.744    (‐0.342)       

% Households with income > 100K  0.509      0.738           

Median Household income (est)  0.627      0.649           

% of population Non‐Hispanic White  0.348        0.528    (‐0.210)  0.394       

Median Parcel Size  0.254          0.812             

Average Block Size    0.242  0.277    0.801         

Average Parcel Size    0.214  0.276    0.785         

Median block size          0.778        (‐0.344) 

% parcels Served by Public Water Supplier          (‐0.774)         

% of population over 65                (‐0.861)          

Median age: Both sexes        0.297    (‐0.826)       

% of Housing Built Since 1990      0.445  0.236    0.588  0.212    0.308 

Median year structure built  0.255    0.390      0.537      0.489 

Greeness (NDVI)           0.225       0.620       

% land in Comm/Industrial uses  (‐0.504)    0.458        (‐0.582)     

% land in Irrigated Ag      0.365    0.424    0.568     

% Impervious Surface  (‐0.422)  (‐0.339)  (‐0.355)    (‐0.325)    (‐0.513)     

% land in farmsteads    (‐0.230)  0.297    0.319    0.500     

% land in open space                      0.944    

% land in urban parks                       0.936   

%% 4‐Way Intersections  (‐0.270)      (‐0.219)          (‐0.668) 

% housing units that are mobile homes           (‐0.302)              0.624 

Percent of Variance Explained by Factor  17.9 10.4 10.0 9.0 8.9 7.1  5.6  4.3 3.4
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Housing Mix: Suburban Factor: 
 
High scores on the suburban factor describe CBGs that have a high percentage of single family homes, 
and high percentages of households that are families.  Other variables that load strongly on this factor 
include a high percentage of housing units that are detached single family homes, a high percentage of 
households that are family households, high number of rooms, large mean household size, and higher 
median household income.  Also included are low measures of renter occupied households, low diversity 
of building and housing types, low population density and low poverty rates (Table 4). 
 
Table 4. Factor loadings on the Suburban Factor.  
 

Suburban   

Percent housing units that are detached single family homes 0.933

Percent HHs that are Family HHs  0.858

Median number of rooms  0.842

Mean HH Size  0.694

Median Household income (est)  0.627

Jobs‐Housing Balance  0.557

Percent Households with income > 100K  0.509

Percent of population Non‐Hispanic White  0.348

Avg summer precip  0.283

Median year structure built  0.255

Median Parcel Size  0.254

% 4‐Way Intersections  (‐0.270)

Population Density (nonfed/nonwater)  (‐0.379)

% Impervious Surface  (‐0.422)

Percent Vacant Housing Units  (‐0.447)

Pct land in Comm/Industrial uses  (‐0.504)

Log of residential pop density  (‐0.569)

Overall Housing Density  (‐0.579)

Estimated Poverty Rate  (‐0.611)

Log form of BE_HDnRs  (‐0.736)

Diversity of Building/Housing Types  (‐0.888)

Percent renter occupied  (‐0.896)

 

Maps illustrating the location of census block groups that have higher and lower scores on the Suburban 
factor are illustrated for the entire WRMA, Salt Lake Valley, and urban GAMUT river study areas below.
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Elevation/Climate Factor: 
 
High scores on the elevation/climate factor describe CBG’s that are high elevation and high precipitation 
The factor describes CBGs that have high annual and summer precipitation, and low annual and summer 
temperatures.  The factor also captures places that have higher than average percentages of vacant 
housing and tree cover typically found in areas of second home development in the mountains.   
 
Table 5: Factor loadings on the Elevation/Climate factor 
 

Elevation   

CL_AvgEL MEAN elevation  0.797

CL_MAnnP Avg annual precip  0.784

CL_MSumP Avg summer precip  0.748

HU_PcVHU Percent Vacant Housing Units  0.549

LC_TrCv % Tree cover  0.389

DM_PCI Per Capita Income (est)  0.319

HU_MdHVa Median housing value (dollars)  0.296

BE_AvBlk Average Block Size  0.242

BE_AvPcl Average Parcel Size  0.214

DM_PcBS Percent adults with BS or higher ed  0.208

BE_InDen Intersection Density  (‐0.230)

LU_pcFST Pct land in farmsteads  (‐0.230)

BE_RDenL Log of residential pop density  (‐0.282)

LC_ImSu % Impervious Surface  (‐0.339)

CL_MAnnT Avg annual temp  (‐0.888)

CL_MSumT Avg summer temp  (‐0.930)

 
 
Maps illustrating the location of census block groups that have higher and lower scores on the 
Elevation/Climate factor are illustrated for the entire WRMA, Salt Lake Valley, and urban GAMUT river 
study areas below. 
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Land Use Mix: Non-Residential Factor  
 
High scores on the land use mix/non-residential factor describes CBGs that have a high diversity of land 
uses.  These also tend to be places that have a high percentage of land in non-irrigated 
agriculture/farmsteads or commercial or industrial uses (and relatively low amounts of residential land 
use).  Areas with land use diversity in this region also tend to have a low density of population and 
housing, relatively low percentage of impervious surface and tree cover, and low intersection density.   
 
Table 6: Factor loadings for Land Use Mix factor. 
 

Non‐Residential   

LU_LuEn Land Use Entropy Index (WRLU)  0.776

LU_pcNI Pct land in Non‐irr Ag  0.483

LU_pcCOM Pct land in Comm/Industrial uses  0.458

HU_PHU90 Percent of Housing Built Since 1990  0.445

HU_MdHYr Median year structure built  0.390

LU_pcIRR Pct land in Irrigated Ag  0.365

LU_pcFST Pct land in farmsteads  0.297

BE_AvBlk Average Block Size  0.277

BE_AvPcl Average Parcel Size  0.276

BE_RDenL Log of residential pop density  (‐0.205)

LC_ImSu % Impervious Surface  (‐0.355)

LC_TrCv % Tree cover  (‐0.460)

BE_HDen Overall Housing Density  (‐0.659)

BE_InDen Intersection Density  (‐0.718)

DM_PDen Population Density (nonfed/nonwater)  (‐0.768)

LU_pcRES Pct land in residential land  (‐0.834)

 
Maps illustrating the location of census block groups that have higher and lower scores on the Land Use 
Mix factor are illustrated for the entire WRMA, Salt Lake Valley, and urban GAMUT river study areas 
below. 
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Socioeconomic Status (SES) Factor: 
 
High scores on the SES factor describe CBG’s that have a high percentage of adults with a BS degree or 
higher, high median housing value, high per capita income, a high percentage of households with an 
income greater than $100,000.  
 
Table 7: Factor Loadings on Socioeconomic Status factor. 
 

SES   

DM_PcBS Percent adults with BS or higher ed  0.818 

HU_MdHVa Median housing value (dollars)  0.805 

DM_PCI Per Capita Income (est)  0.744 

DM_P100K Percent Households with income > 100K  0.738 

DM_MdHHI Median Household income (est)  0.649 

DM_PcWht Percent of population Non‐Hispanic White  0.528 

LC_TrCv % Tree cover  0.384 

HU_MdRms Median number of rooms  0.375 

CL_AvgEL MEAN elevation  0.331 

DM_MdAge Median age: Both sexes  0.297 

CL_MAnnP Avg annual precip  0.250 

HU_PHU90 Percent of Housing Built Since 1990  0.236 

LC_Green Greeness (NDVI)  0.225 

BE_Pct4w % 4‐Way Intersections  (‐0.219) 

DM_PovRt Estimated Poverty Rate  (‐0.285) 

HU_PcMbH Percent housing units that are mobile homes  (‐0.302) 

 
Maps illustrating the location of census block groups that have higher and lower scores on the 
Socioeconomic Status factor are illustrated for the entire WRMA, Salt Lake Valley, and urban GAMUT 
river study areas below. 
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LOW DENSITY DEVELOPMENT Factor: 
 
High scores on the low density development factor describe CBG’s that have large parcel and block sizes.  
This factor primarily includes variables related to the size of the lot.  These CBGs also tend to be places 
that are less likely to be served by a public water supplier. 
 
Table 8: Factor loadings on Low Density Development Factor 
 

LargeLots   

BE_MdPcl Median Parcel Size  0.812

BE_AvBlk Average Block Size  0.801

BE_AvPcl Average Parcel Size  0.785

BE_MdBlk Median block size  0.778

LU_pcIRR Pct land in Irrigated Ag  0.424

LU_pcFST Pct land in farmsteads  0.319

DM_PDen Population Density (nonfed/nonwater) (‐0.210)

BE_RDenL Log of residential pop density (‐0.291)

BE_HDnRL Log form of BE_HDnRs  (‐0.292)

BE_InDen Intersection Density  (‐0.319)

LC_ImSu % Impervious Surface  (‐0.325)

LU_pcRES Pct land in residential land (‐0.359)

WI_PcPWS % parcels Served by Public Water Supplier (‐0.774)

 
Maps illustrating the location of census block groups that have higher and lower scores on the Lower 
Density factor are illustrated for the entire WRMA, Salt Lake Valley, and urban GAMUT river study 
areas below. 

  



38 
 

 



39 
 



40 
 



41 
 

Population/Housing Age Factor: 
 
This factor describes CBGs that have a relatively young population, large household sizes, and a high 
percentage of housing built since 1990, as well as a high (recent) median year built.  One interesting 
finding is that age of population and age of housing stock are positively related in Utah – younger 
populations tend to live in more recently built housing (and vice versa). 
 
Table 9: Factor loadings on population/housing age factor. 
 

PopAge   

HC_HHSz Mean HH Size  0.613

HU_PHU90 Percent of Housing Built Since 1990  0.588

HU_MdHYr Median year structure built  0.537

LU_pcNI Pct land in Non‐irr Ag  0.326

EE_JHBAL Jobs‐Housing Balance  0.296

HC_PcFHH Percent HHs that are Family HHs  0.279

DM_PovRt Estimated Poverty Rate  0.201

BE_RDenL Log of residential pop density  0.201

DM_PcWht Percent of population Non‐Hispanic White  (‐0.210)

CL_MAnnP Avg annual precip  (‐0.249)

LC_TrCv % Tree cover  (‐0.324)

DM_PCI Per Capita Income (est)  (‐0.342)

DM_MdAge Median age: Both sexes  (‐0.826)

DM_PcO65 Percent of population over 65  (‐0.861)

 
Maps illustrating the location of census block groups that have higher and lower scores on the 
Population/Housing Age factor are illustrated for the entire WRMA, Salt Lake Valley, and urban 
GAMUT river study areas below. 
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Land Cover: Irrigated Agriculture and Greenness Factor 
 
This factor describes CBGs that tend to be ‘green’ (e.g., have a high relative NDVI index).  This is 
associated with a high percentage of land in irrigated agriculture and farmsteads, and low percentages of 
impervious surface or commercial and industrial land uses.   
 
Table 10: Factor loadings for Land Cover / Greenness factor. 
 

Irrigated Ag/Greenness   

LC_Green Greeness (NDVI)  0.620

LU_pcIRR Pct land in Irrigated Ag  0.568

LU_pcFST Pct land in farmsteads  0.500

DM_PcWht Percent of population Non‐Hispanic White  0.394

HU_PHU90 Percent of Housing Built Since 1990  0.212

BE_InDen Intersection Density  (‐0.234)

BE_HDnRL Log form of BE_HDnRs  (‐0.437)

BE_RDenL Log of residential pop density  (‐0.502)

LC_ImSu % Impervious Surface  (‐0.513)

LU_pcCOM Pct land in Comm/Industrial uses  (‐0.582)

 
Maps illustrating the location of census block groups that have higher and lower scores on the Land 
Cover factor are illustrated for the entire WRMA, Salt Lake Valley, and urban GAMUT river study areas 
below. 
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Urban Open Space Factor: 
 
High scores on the urban open space factor describe CBG’s that have a high percentage of land in urban 
open space, and a high percentage of parks.   
 
Table 11: Factor loadings for Urban Open Space factor. 
 

Urban Parks/Open Space   

LU_pcOSp Pct land in open space  0.944

LU_Park % Parks  0.936

LU_LuEn Land Use Entropy Index (WRLU) 0.274

 
Maps illustrating the location of census block groups that have higher and lower scores on the Land 
Cover factor are illustrated for the entire WRMA, Salt Lake Valley, and urban GAMUT river study areas 
below. 
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Mobile Homes Factor: 
 
The mobile homes factor describes CBGs that have a high percentage of housing units that are mobile 
homes (and relatively recently built housing stock).  Areas with many mobile homes also tend to have 
fewer 4-way intersections and shorter median block lengths.   
 
Table 12: Factor loadings on Mobile Homes factor. 
 
 

Mobile Homes   

HU_PcMbH Percent housing units that are mobile homes  0.624 

HU_MdHYr Median year structure built  0.489 

HU_PHU90 Percent of Housing Built Since 1990  0.308 

BE_MdBlk Median block size  (‐0.344) 

BE_Pct4w % 4‐Way Intersections  (‐0.668) 

 
 
Because it explained the least amount of overall variance and did not contribute well to an intuitive 
cluster analysis, this factor was excluded from the cluster modeling that is described below. 
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Cluster Analysis	
 
We used hierarchical cluster analysis to group CBGs into clusters based on their factor scores on the first 
8 factors described above5.  Cluster analysis is frequently used to combine diverse units of analysis into 
groups that are as homogenous as possible within each cluster, and as different as possible between the 
clusters.  Similarity (or difference) is measured in terms of ‘communalities’ that reflect various statistical 
measures of ‘distance’ between individual members and the aggregated clusters.  In our analysis, we used 
a hierarchical clustering technique that sequentially combines CBGs into clusters via a series of steps that 
repeatedly merge unclustered CBGs (or previously identified clusters) into new cluster groups that are 
similar across all 8 factors.  There are a variety of techniques used to determine the number of clusters 
that represent the optimal combination of within-cluster ‘homogeneity’ and parsimony (e.g., fewer total 
cluster groups).  Our study examined the final 50 cluster merger steps that were performed on our dataset 
(sets of clusters ranging from 50 distinct clusters to a single merged cluster), and used statistical 
indicators of ‘distance’ and a visual examination of the merger ‘dendogram’ to identify critical thresholds 
where intra-cluster homogeneity and inter-cluster differentiation were maximized. 
 
The resulting cluster classification identified several clear ‘cutoff’ points where additional clustering 
required relatively unlike groups to be merged.  Based on an evaluation of the cluster distance scores and 
a visual assessment of the dendogram associated with the final stepwise clustering mergers (Figure 2), we 
identified two points where stable and coherent sets of clusters were found.  The more refined set 
included 31 individual neighborhood types.  A more coarse/aggregated set of 10 major neighborhood 
cluster types was also defined, with each of the 31 detailed clusters being members of one of the 10 major 
clusters.  Two of these 10 major clusters had three or fewer CBG members and were dropped since they 
represent outliers that did not fit with any other cases.   
 
The remaining 8 major cluster groups and their associated subclusters (those with at least with 5 or more 
CBG members) are described below.  Each cluster (and subcluster) is given a specific name that reflects 
the attributes that make each cluster distinctive.  We begin by noting some of the factors that distinguish 
each major group of clusters.  We then present detailed descriptions and profiles of the major individual 
clusters, and illustrate their spatial locations across the WRMA and within each GAMUT study area. 
 
  

                                                      
5 We dropped the 9th factor (mobile homes) for four reasons: (a) it was the factor that explained the least 
variance; (b) the map of factor scores did not have face validity since high and low score locations were 
not intuitive given our knowledge of particular neighborhoods; (c) it was not obvious how it should 
theoretically be linked to water outcomes; and (d) it had disproportionate influence on the eventual 
classification of individual cases into clusters given its relative low importance to our theory and model. 
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FIGURE 2: Dendogram of Hierarchical Cluster Mergers 
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Major Cluster Groups 
 
There are 8 major cluster groups and 22 individual subcluster types in the WRMA region (see Table 13)6.  
Each of the major clusters represents between 6-21% of the population and 2-27% of the land area in the 
urban WRMA.   
 

Table 13: Wasatch Range Metropolitan Area Urban Typology 

 The Expanding City (T0) - 15% population; 27% area 
o EC-A: Mature Homesteaders (n=91) 
o EC-B: Young Homesteaders (n=60) 
o EC-C: Green Acres (n=17) 

 New Suburban (T3) - 21% population; 20% area 
o NS-A: Starter Suburbs (n=124) 
o NS-B: Away-From-It-All Suburbs (n=47) 
o NS-C: Suburban Elite (n=47) 
o NS-D: Alpine Suburbs (n-9) 

 Suburban Working Class (T7) - 8% population; 9% area 
o SWC: Working Class Suburban (n=99) 

 The Moderate Middle (T1) - 15% population; 17% area 
o MM-A: Aging Farmsteads (n=5) 
o MM-B: Working Class Traditional (n=112) 
o MM-C: Middle-Class with a View (n=106) 

 Traditional Residential Core (T5) - 18% population; 11% area 
o TRC-A: Original Residential (n=131)  
o TRC-B: Traditional Upper Crust (n=146) 

 Parkside Residential(T2) - 6% population; 3% area 
o PR-A: Neighborhood Park neighborhoods (n=70) 
o PR-B: Golf courses and Cemeteries (n=5) 
o PR-C: City Park neighborhoods (n=12) 

 Mixed Urban Residential (T4) - 9% population; 2% area 
o BN-A: Working Class Mixed (n=70) 
o BN-B: Wasatch Bohemians (n=62) 
o BN-C: Provohemians (n=5) 

 The Urban Scene (T6) - 9% population; 7% area 
o US-A: Downtown Residential (n=75) 
o US-B: Downtown Industrial (n=36) 
o US-C: Downtown Commercial (n=15) 

 
  

                                                      
6 Four of these individual types have less than 10 CBG members.  While they represent interesting and 
distinctive neighborhood types, because they represent relatively few places in the WRMA, they are not 
discussed in depth in the sections below. 
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Figure XX: Map of the Distribution of Neighborhood Types and Major Cluster Groups in WRMA 
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Major Cluster Groups: Housing Type and Land Use Patterns 

Initially, the mean factor scores on two key indicators of housing and land use patterns – Suburban and 
Non-Residential – are shown in Figure 3 for each of the largest 18 individual clusters7.  Orange boxes are 
drawn around each major cluster group to highlight the shared membership.   

Three major cluster groups are notable for unusually high scores on the “Suburban” factor, which 
captures primarily differences in housing types and settlement patterns.  The individual clusters in the 
New Suburban, Suburban Working Class, and Moderate Middle groups consistently score above average 
on the Suburban factor.  This reflects a greater predominance of single-family homes, less diversity in 
housing types, larger household sizes, lower overall housing density, and fewer renters.  At the same time, 
two other groups have unusually low scores on the same factor: Mixed Urban Residential Neighborhoods 
and Urban Scene.  These places have more non-family housing, greater housing diversity and density, and 
smaller housing units. 

Meanwhile, two major cluster groups are distinguished for having high scores on the “Non-Residential” 
factor, which captures mainly differences in land use mix (higher scores reflect greater land use diversity 
and lower levels of residential land use).  The first group (Expanding City) consists of three sub clusters 
who all share unusually high scores on the ‘non-residential’ factor.  In these cases, high scores reflect the 
presence of significant agricultural or undeveloped land use.  The eighth group (Urban Scene), reflects 
three subgroups that all have high scores on non-residential that reflect a greater amount of commercial 
and industrial land uses.   

Finally, three major cluster groups – Working Class Suburban, Moderate Middle, and Mixed Urban 
Residential neighborhoods – share notably low scores on the ‘Non-Residential’ factor.  In these 
neighborhoods one finds less land use diversity, a greater use of land for housing, and higher population 
densities. 

                                                      
7 In the descriptions below, we exclude neighborhood types that have less than 10 members. 
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Figure 3: Mean Factor Scores for Housing Mix and Land Use Factors by Neighborhood Type.
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Major Cluster Groups: Greenness and Urban Open Space 

Combinations of two other factors reflect the types of land cover and amount of ‘greenness’ found within 
each census block group.  The distribution of scores by major cluster groups and individual subclusters on 
these two factors is shown in Figure 4 below.   

Initially, it is clear that two major cluster groups are uniquely defined by their relatively high (Expanding 
City) or low (Urban Scene) scores on the Irrigated Ag/Greenness factor (the blue bars).  In the first 
instance, this reflects the fact that CBGs in the cluster are all located in transitioning areas at the urban 
fringe with significant amounts of agricultural land use and hobby farming.  In the latter case, the 
opposite is true and (particularly for the Downtown Industrial and downtown commercial clusters) the 
remaining land cover has a much lower NDVI greenness score.  Interestingly, among the ‘suburban’ 
groups – the working class suburban group is also distinctive for having relatively low greenness. 

A separate factor – Urban Open Space – captures the percent of land area in a CBG that is in urban parks 
and open spaces.8  One major cluster group – Parkside Residential – was formed primarily based on this 
factor.  Both individual subclusters in this group have scores on the urban open space factor that are 2 to 5 
standard deviations above the population average. 

 

Figure 4: Mean Factor Scores for Land Cover and Urban Open Space factors by Type. 

                                                      
8 By design this factor is not correlated with the irrigated ag/greenness factor. 
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Major Cluster Groups: Socioeconomic Status and Age 

Figure 5 shows the mean factor scores for the ‘SES’ and ‘Age’ factors.  In the first case, high scores 
reflect a population with greater income, wealth and education and fewer racial or ethnic minorities, while 
low scores reflect the inverse.  The Age factor reflects both the age of the population and of the local 
housing stock.  Higher scores reflect places that have a higher median age and more citizens over the age 
of 65.  Lower scores reflect areas with recently built housing, younger families, and larger average 
household sizes. 

Several major cluster groups are noted for having older than average populations and older housing stock: 
Moderate Middle, Traditional Residential, and Parkside Residential.  By contrast, three groups have 
notably younger housing stock and residents: New Suburban, Working Class Suburban, and Mixed Urban 
Residential neighborhoods.   

Aside from the Working Class Suburban and Moderate Middle groups, the SES factor scores did not 
define many major cluster groups, but rather serves as a key factor that distinguishes individual clusters 
within major cluster groups.  For example, within the New Suburban and Traditional Residential groups, 
a single cluster type (Suburban Elite and Traditional Upper Crust, respectively) present the two highest 
SES clusters in the WRMA.  However, the other clusters in their groups did not have notably high or low 
scores on the SES factor.  Similarly, the four clusters with the lowest SES scores (Working Class 
Traditional, Downtown Industrial, Working Class Suburban, and Working Class Mixed) are each found 
in different groups. 

 

Figure 5: Mean Factor Scores for SES and Age factors by Type.  
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Major Cluster Groups: Elevation and Lot Size 

Figure 6 shows the mean factor scores for the final two factors: Elevation and Lower Density.  In the first 
case, high scores reflect CBGs that are located at higher elevations, have colder temperatures and higher 
amounts of annual and seasonal precipitation.  Low scores reflect the opposite conditions. High scores on 
the Large Lot factor reflect larger average parcel sizes, longer street blocks, and areas that are less well 
served by a public water supplier.   

Two major cluster groups share low scores on the elevation factor (Expanding City and Urban Scene), 
while one group has individual clusters that are located at notably higher elevations (Moderate Middle).  
In most of the other groups, individual clusters do not share common elevational traits and/or have scores 
on this factor that are close to the population average. 

One individual cluster has a very large score on the Large Lot variable (Green Acres), though the 
Expanding City group also contains one cluster that has relatively small parcels (Young Homesteaders).  
Among the various suburban and residential groups, the New Suburban, Traditional Residential, and 
Parkside Residential groups appear to have consistently small average lot sizes. 

 

Figure 6: Mean Factor Scores for Elevation and Large Lot factors by Type .  
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Summary of Major Cluster Group Traits 

The various combinations of distinctively high and low factor scores on the 8 factors used in our cluster 
analysis are summarized in Table 14.  While the patterns are complex, it is clear that the eight major 
cluster groups reflect unique combinations of high and low scores on the some of the core analytical 
factors.  Moreover, within each major cluster group, individual neighborhood types are disaggregated 
based on unusually high or low scores on additional factors.   

For example, while all of the ‘Urban Scene’ neighborhoods are notable for low scores on the Surburban, 
Greenness, and Elevation factors (and high scores on the Non-residential factor), the Downtown 
Industrial neighborhoods are distinguished by a relatively low SES score among local residents, while the 
people living in Downtown Commercial neighborhoods have unusually high SES scores. 

A more detailed description of each of the major cluster groups and its individual neighborhood types is 
presented in the next section, along with maps that illustrate the location of these neighborhoods within 
some of the major watersheds in the WRMA. 
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Table 14: Distinguishing Factors for 8 Major Cluster Groups and 18 Neighborhood Types 
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EC Expanding City
HIGH 
(1.1)

HIGH 
(1.3)

LOW    
(-0.5)

HIGH 
(0.3)

EC-A Mature Homesteaders (n=91) high high low low high
EC-B Young Homesteaders (n=60) low high high high low low

EC-C Green Acres (n=17) high high low

NS New Suburban
HIGH 
(0.6)

LOW    
(-0.9)

LOW    
(-0.2)

NS-A Starter Suburbs (n-124) high low low

NS-B Away-from-it-all Suburbs (n=47) high low low low

NS-C Suburban Elite (n=47) high high low low

SWC Suburban Working Class
HIGH 
(0.9)

LOW    
(-0.9)

LOW    
(-0.8)

LOW    
(-0.6)

LOW    
(-0.6)

SWC Working Class Suburban (n=99) high low low low low

MM Moderate Middle
HIGH 
(0.3)

LOW    
(-0.3)

LOW    
(-0.7)

HIGH 
(0.6)

HIGH 
(0.8)

MM-B Working Class Traditional (n=112) high low low high high

MM-C Middle-Class-With-A-View (n=106) high low high high

TRC Traditional Residential Core
HIGH 
(0.7)

HIGH 
(0.8)

LOW    
(-0.1)

TRC-A Original Residential (n=131) low high low

TRC-B Traditional Upper Crust (n=146) high low high high low

PR Parkside Residential
HIGH 
(2.7)

HIGH 
(0.3)

LOW    
(-0.2)

PR-A Neighborhood Parks (n=70) high high high low

PR-C City Parks (n=12) low high high low

BN Mixed Urban Residential
LOW    
(-1.4)

LOW    
(-1.2)

LOW    
(-0.6)

BN-A Working Class Mixed (n=70) low low low

BN-B Wasatch Bohemians (n=62) low low high low

US-A The Urban Scene
LOW    
(-1.3)

HIGH 
(1.0)

LOW    
(-1.3)

LOW    
(-0.3)

US-A Downtown Residential (n=75) low high low low

US-B Downtown Industrial (n=36) low high low low low

US-C Downtown Commercial (n=15) low high low high low

MEAN FACTOR SCORE
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CLUSTER GROUP 1:  THE EXPANDING CITY 
 
The Expanding City cluster group of neighborhood types are all defined by having unusually large areas 
still in irrigated agriculture (and an associated ‘green’ NDVI signature), mixed land uses, relatively low 
percentages of area developed for residential land use, and are located at relatively low elevations within 
the WRMA (Figure 7).  When viewed on a map (Figures Y1-43), these types clearly represent areas on 
the urban fringe that are actively transitioning from agricultural to residential land uses.  While they have 
population densities above 100 pp/sq. mile, they are located on the ‘rural’ end of the rural-urban 
continuum. Within this group, the “Green Acre” neighborhood subtype (n=17) is notable for having very 
large lot sizes and a somewhat older population.  Meanwhile, the “Young Homesteaders” neighborhood 
subtype (n=60) is distinctive for a younger population and housing stock and slightly smaller than 
average lot sizes.  
 
 

 
 
Figure 7: Mean Factor Scores for Neighborhood Types within Expanding City major cluster group. 
 

Maps of the distribution of census block groups in this cluster group for the WRMA, Salt Lake Valley, 
and iUTAH GAMUT areas are illustrated in Figures X-Y. 
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CLUSTER GROUP 2:  NEW SUBURBAN 

 
The New Suburban cluster group of neighborhood types are notable for very high scores on the hoising 
mix-suburban factor (which reflects a family-household, single-family home dominated residential 
pattern), newly built houses, very young populations, and relatively small lot sizes (Figure 8).  Within this 
cluster group there are three distinctive neighborhood types.  The largest (n=124) are the “Starter 
Suburbs” that are the most ‘classic’ exemplar of this type of place.  A second neighborhood type, “Away 
from It All Suburbs” are among the newest developments, tend to be located farther from the urban core, 
have slightly higher than average elevation, and are among the most suburban and residential-dominated 
of all the neighborhood types.  They are distinctive in this cluster for their relatively low score on the 
‘greenness factor’ – reflecting a relatively lower proportion of green vegetation and trees than the other 
two types.  The third neighborhood type in this category is the ‘Suburban Elite’ – a group with the highest 
SES score of any of our neighborhood types, but located at slightly lower than average elevations. 
 
 

 

Figure 8: Mean Factor Scores for Neighborhood Types within the New Suburban major cluster 
group. 
 

Maps of the distribution of census block groups in this cluster group for the WRMA, Salt Lake Valley, 
and iUTAH GAMUT areas are illustrated in Figures X-Y. 
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CLUSTER GROUP 3: SUBURBAN WORKING CLASS 
 
The Suburban Working Class cluster group has just one significant neighborhood type, Working Class 
Suburban (n=99) that is noteworthy for having a family household, single-family detached housing type, 
young population and housing stock, predominant residential land use, notably low levels of ‘greenness’ 
in its land cover, and moderate to low SES status (Figure X).  When viewed on a map (Figures Y1-Y4), 
these types tend to be located … 
 
 
 

 
 

Figure 9: Mean Factor Scores for Neighborhood Types within the Suburban Working Class major 
cluster group. 

 

Maps of the distribution of census block groups in this cluster group for the WRMA, Salt Lake Valley, 
and iUTAH GAMUT areas are illustrated in Figures X-Y. 
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CLUSTER GROUP 4:  THE MODERATE MIDDLE 
 
The Moderate Middle cluster group of neighborhood types are all defined by having a predominance of 
residential land use, suburban style homes, family households, relatively older housing stock and 
populations, and relatively higher elevations (Figure 10).  When viewed on a map (Figures Y1-Y3), these 
neighborhoods represent areas along the benches that have relatively average income and SES status. 
Within this group, the “Middle-Class with a View” neighborhood subtype (n=106) is notable for 
somewhat older neighborhoods in higher elevation locations with ‘average’ income and housing values.  
The other major subgroup (“Working Class Traditional”; n=112) is distinctive for significantly lower SES 
status and slightly lower scores on the suburban factor.  
 
. 
 

 
 

Figure10: Mean Factor Scores for Neighborhood Types within the Moderate Middle major cluster 
group 

Maps of the distribution of census block groups in this cluster group for the WRMA, Salt Lake Valley, 
and iUTAH GAMUT areas are illustrated in Figures X-Y. 
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CLUSTER GROUP 5:  TRADITIONAL RESIDENTIAL CORE 
 
The Traditional Residential Core cluster group of neighborhood types (as a group) are all characterized 
mostly by the older age of the housing stock, relatively small lot sizes and generally lower elevation 
settings.  Generally speaking these represent some of the originally developed neighborhoods in Utah’s 
urban areas.  One important neighborhood type in this cluster (Traditional Upper Crust’; n=131) is 
notable for having unusually high SES status, a more suburban type of housing stock (perhaps because 
more parcels have been redeveloped), and somewhat lower levels of ‘green’ land cover.  The other 
neighborhood type in this group (Original Residential) has among the oldest housing stock in the region 
and has a much less suburban pattern of housing and household types. 
 
 
 

 

Figure 11: Mean Factor Scores for Neighborhood Types within the Traditional Residential Core 
major cluster group. 
 

Maps of the distribution of census block groups in this cluster group for the WRMA, Salt Lake Valley, 
and iUTAH GAMUT areas are illustrated in Figures X-Y. 
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CLUSTER GROUP 6:  PARKSIDE RESIDENTIAL 
 
The Parkside Residential cluster group of neighborhood types are  quite clearly distinctive for being home 
to a significant urban park or open space.  These green spaces include official parks, but also golf courses, 
church and school grounds, and other institutional spaces that maintain large lawns and open areas.  
Neighborhoods in this cluster group are not geographically concentrated, but rather scattered across most 
urban areas.  The two main subgroups in this category are distinguished by the degree of suburban 
housing pattern: Neighborhood Park neighborhoods (n=70) are surrounded by newer homes in more 
suburban patterns, while City Park neighborhoods (n=12) tend to be characterized by older houses and 
diverse housing types. 
 
 
 

 

Figure 12: Mean Factor Scores for Neighborhood Types within the Parkside Residential major 
cluster group. 
 

Maps of the distribution of census block groups in this cluster group for the WRMA, Salt Lake Valley, 
and iUTAH GAMUT areas are illustrated in Figures X-Y. 
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CLUSTER GROUP 7:  MIXED URBAN RESIDENTIAL 
 
The Mixed Urban Residential cluster group of neighborhood types are notable for being dominated by 
residential land use, but of a decidedly non-suburban character.  Neighborhoods in this group have 
relatively few family households, diverse housing options, and a young population.  Mixed Urban 
Residential neighborhoods are also scattered across much of the WRMA, with few large aggregations of 
this type in any one area.  The two main neighborhood types in this group are distinguished by their SES 
status, with Working Class Mixed (n=70) tending to have relatively low income and SES status, while the 
Wasatch Bohemians are one of the wealthier and less racially mixed neighborhood types. 
 
 
 

 

Figure 13: Mean Factor Scores for Neighborhood Types within the Mixed Urban Residential major 
cluster group. 
 

Maps of the distribution of census block groups in this cluster group for the WRMA, Salt Lake Valley, 
and iUTAH GAMUT areas are illustrated in Figures X-Y. 
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CLUSTER GROUP 8:  THE URBAN SCENE 
 
The Urban Scene cluster group of neighborhood types are defined by their location in the urban core of 
WRMA cities, with a high level of land use diversity, large amounts of commercial-industrial land use, 
mixed housing types, and relatively low levels of green landcover. 
 
 
 

 

Figure 14: Mean Factor Scores for Neighborhood Types within the Urban Scene major cluster 
group. 
 

Maps of the distribution of census block groups in this cluster group for the WRMA, Salt Lake Valley, 
and iUTAH GAMUT areas are illustrated in Figures X-Y. 
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Discussion	and	Conclusions	
 

In this paper, we developed a neighborhood typology based on characteristics of socio-ecohydrologic 
measures.  Neighborhoods were defined as census block groups (CBGs) because the U.S. Census 
designates CBGs as approximate neighborhoods, and data availability was sufficient at the CBG level.  
To guide our research, we asked which variables represented meaningful and measurable expressions of 
the diverse ways humans occupy landscapes? We collected 48 variables (Table X) that represented land 
cover, land use, the built environment, household structure, socioeconomic status, water infrastructure, 
policy, and climate characteristics the neighborhoods.  We used these variables to conduct a factor 
analysis to identify variables that were closely correlated to each other.  This analysis resulted in eight 
factors: housing mix-suburban, elevation, land use mix-non-residential, socioeconomic status (SES), 
lower density, population age, irrigated agriculture/greenness, urban parks/open space, and mobile homes.   
A neighborhood’s factor scores described the character of the neighborhood.  For example, 
neighborhoods that scored high on the land use mix-suburban factor had a high percentage of housing 
units that were detached single family homes, and had a high percentage of housing units that were family 
households. 

We then asked if a typology can be developed that would reflect distinct measurable attributes that link 
urban characteristics and water system outcomes.  While we successfully developed a typology to group 
similar neighborhoods together, and to separate dissimilar neighborhoods, our question remains 
unanswered.  The typology is based on a hierarchical cluster analysis of all CBGs based on their eight 
factor.  We identified eight distinctive clusters and 22 individual subcluster types.  Each type was labelled 
based on our interpretation of the factor scores (Table X) and the results indicate that the major clusters 
represents between 6-21% of the population and 2-27% of the land area in the urban WRMA.  However, 
we have not yet examined the links between our typology classification and water system outcomes.   

Our third research question also remains unanswered.  We asked if the statistically produced typology fits 
with local understandings of neighborhood boundaries.  Throughout the process the authors used intuition 
and expert judgment to ensure that the typology classifications were reflecting with their perceptions of 
familiar neighborhoods.  However, no effort was made to test whether the neighborhood classification fit 
with the public’s perceptions of neighborhood boundaries and characteristics.  This remains as a future 
task. 

However, we can conclude that we identified statistically distinct clusters of urban neighborhoods.  For 
example, our mature homesteaders cluster differs significantly from our downtown commercial cluster in 
regard to the suburban factor.  Other statistically significant differences between typology groups exist for 
each of the factor scores.  Our use of hierarchical cluster analysis ensured that our clusters were similar 
within clusters and different as possible between clusters.  This strategy has been employed by other 
researchers seeking to identify similar and dissimilar neighborhoods (Shay and Khattak 2007).    

The neighborhood typology now provides a formal basis for future research.  As mentioned earlier, the 
work reported here will be a fundamental building block of a larger NSF-funded project that will install 
and implement human and research infrastructure.  This typology can guide the selection of 
neighborhoods for future research.  For example, researchers can select neighborhoods examine 
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differences in hydrological outcomes.  Do the “Working Class Traditional neighborhoods” use less water 
than the “Working Class Mixed” neighborhoods?  Does stormwater runoff differ between “suburban 
elite” and “starter suburbs”?  Questions like these can now be answered by researchers, and this typology 
provides justification for a formal basis for selecting different neighborhoods.   

Our research is methodologically similar to other research that developed a typology for neighborhoods 
(Chow 1998; Shay and Khattak 2007), but is the first to develop a neighborhood typology based on land 
cover, land use, built environment, housing, and demographic characteristics that likely have hydrologic 
outcomes.  Almost all of the variables that we collected for our analysis can be easily obtained across the 
U.S., and this methodology can be replicated in other metropolitan regions. 

We note the following limitations to our study.  First, this is a cross-sectional research design and 
therefore our typology cannot establish causality between neighborhood characteristics and water system 
outcomes.  The typology can establish correlation or relationships, but causality will remain elusive in the 
absence of experimentation.  Secondly, this typology is not externally valid.  Our typology types are 
appropriate for the WRMA, and likely not appropriate for other metropolitan regions.  The methodology 
we used can be employed in other regions in order to tailor the typology to a specific region.  The more 
replications of this work, the more the external validity will improve.  Third, our selection of CBGs as a 
unit of analysis may artificial bias the boundaries of “true” neighborhoods.  For example, the boundaries 
of a neighborhood from a resident’s perspective may not align with the boundaries designated by the 
Census Bureau. Defining neighborhood boundaries has challenged researchers for years (Hawley and 
Duncan 1957), and we addressed this challenge by employing an accepted methodology (Chow 1998; 
Shay and Khattak 2007) while working within data availability constraints. 

Over time, we will use the typology to explore the impacts of urban form on this suite of hydrologic 
outcomes and the ecosystem services that are driven by flows and fluxes of water in the urban landscape.  
Future work will examine residential water use outcomes between neighborhood types.  Researchers will 
administer questionnaires will be based on the typology, to examine if water attitudes, perceptions and 
values differ between neighborhood types.  This typology will also guide the physical implementation of 
biophysical research instruments.  In sum, this typology will help provide a framework for establishing a 
water sustainability research network in this region. 
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