Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
This resource contains some files/folders that have non-preferred characters in their name. Show non-conforming files/folders.
This resource contains content types with files that need to be updated to match with metadata changes. Show content type files that need updating.
Authors: |
|
|
---|---|---|
Owners: |
|
This resource does not have an owner who is an active HydroShare user. Contact CUAHSI (help@cuahsi.org) for information on this resource. |
Type: | Resource | |
Storage: | The size of this resource is 2.8 MB | |
Created: | Feb 25, 2020 at 6:59 p.m. | |
Last updated: | Jan 27, 2021 at 4:56 a.m. (Metadata update) | |
Published date: | Jan 27, 2021 at 4:56 a.m. | |
DOI: | 10.4211/hs.86c58dfe5067486aa014ea814e3e79ff | |
Citation: | See how to cite this resource |
Sharing Status: | Published |
---|---|
Views: | 1030 |
Downloads: | 39 |
+1 Votes: | Be the first one to this. |
Comments: | No comments (yet) |
Abstract
Land-use in Panama has changed dramatically with ongoing conversion of forests to subsistence farms and cattle pastures, potentially altering soil properties that drive the hydrological processes of infiltration and overland flow. We compared overland flow generation between hillslopes in forested and actively cattle grazed watersheds in central Panama. Soil physical and hydraulic properties, soil moisture, and overland flow data were measured along hillslopes of each land-use type. Soil characteristics and rain-event data were input into a simply representative model, HYDRUS-1D, to simulate overland flow that we use to make inferences about overland flow response at forest and pasture sites. Runoff ratios (overland flow/rainfall) were generally higher at the pasture site, though we did not observe any overall trends between rainfall characteristics and runoff ratios across the two land-uses at the plot scale. Saturated hydraulic conductivity (Ks), bulk density and porosity had strong evidence for differences between the forest and pasture sites (p < 10-4). Simulating overland flow in HYDRUS-1D produced outputs similar to the overland flow recorded at the pasture site, but little to no overland flow could be simulated at the forest site. Results from our study indicate that, at the plot scale, Hortonian overland flow is the main driver for overland flow generation at the pasture site, whereas the combination of a leaf litter layer and the activation of shallow preferential flow paths are likely the main drivers for overland flow generation at the forest site. Results from this study contribute to the broader understanding of the delivery of freshwater to streams, which will become increasingly important in the tropics considering freshwater resource scarcity and changing storm intensities.
Subject Keywords
Coverage
Temporal
Start Date: | |
---|---|
End Date: |
Content
How to Cite
This resource is shared under the Creative Commons Attribution CC BY.
http://creativecommons.org/licenses/by/4.0/
Comments
There are currently no comments
New Comment