Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
This resource contains some files/folders that have non-preferred characters in their name. Show non-conforming files/folders.
This resource contains content types with files that need to be updated to match with metadata changes. Show content type files that need updating.
Authors: |
|
|
---|---|---|
Owners: |
|
This resource does not have an owner who is an active HydroShare user. Contact CUAHSI (help@cuahsi.org) for information on this resource. |
Type: | Resource | |
Storage: | The size of this resource is 88.2 MB | |
Created: | Sep 12, 2019 at 12:27 a.m. | |
Last updated: | Jun 07, 2021 at 4:33 p.m. (Metadata update) | |
Published date: | Mar 15, 2021 at 1:42 p.m. | |
DOI: | 10.4211/hs.9c4a6e2090924d97955a197fea67fd72 | |
Citation: | See how to cite this resource | |
Content types: | Geographic Feature Content Geographic Raster Content |
Sharing Status: | Published |
---|---|
Views: | 6249 |
Downloads: | 1076 |
+1 Votes: | 1 other +1 this |
Comments: | No comments (yet) |
Abstract
This resource contains data inputs and a Jupyter Notebook that is used to introduce Hydrologic Analysis using Terrain Analysis Using Digital Elevation Models (TauDEM) and Python. TauDEM is a free and open-source set of Digital Elevation Model (DEM) tools developed at Utah State University for the extraction and analysis of hydrologic information from topography. This resource is part of a HydroLearn Physical Hydrology learning module available at https://edx.hydrolearn.org/courses/course-v1:Utah_State_University+CEE6400+2019_Fall/about
In this activity, the student learns how to (1) derive hydrologically useful information from Digital Elevation Models (DEMs); (2) describe the sequence of steps involved in mapping stream networks, catchments, and watersheds; and (3) compute an approximate water balance for a watershed-based on publicly available data.
Please note that this exercise is designed for the Logan River watershed, which drains to USGS streamflow gauge 10109000 located just east of Logan, Utah. However, this Jupyter Notebook and the analysis can readily be applied to other locations of interest. If running the terrain analysis for other study sites, you need to prepare a DEM TIF file, an outlet shapefile for the area of interest, and the average annual streamflow and precipitation data.
- There are several sources to obtain DEM data. In the U.S., the DEM data (with different spatial resolutions) can be obtained from the National Elevation Dataset available from the national map (http://viewer.nationalmap.gov/viewer/) Another DEM data source is the Shuttle Radar Topography Mission (https://www2.jpl.nasa.gov/srtm/) an international research effort that obtained digital elevation models on a near-global scale (search for Digital Elevation at https://www.usgs.gov/centers/eros/science/usgs-eros-archive-products-overview?qt-science_center_objects=0#qt-science_center_objects)
- If not already available, you can generate the outlet shapefile by applying basic terrain analysis steps in geospatial information system models such as ArcGIS or QGIS.
- You also need to obtain average annual streamflow and precipitation data for the watershed of interest to assess the annual water balance and calculate the runoff ratio in this exercise. In the U.S., the streamflow data can be obtained from the USGS NWIS website (https://waterdata.usgs.gov/nwis) and the precipitation from PRISM (https://prism.oregonstate.edu/normals/) Note that using other datasets may require preprocessing steps to make data ready to use for this exercise.
Subject Keywords
Coverage
Spatial
Content
Data Services
Related Resources
This resource is referenced by | Lane, B. A. & Garousi Nejad, I. (2019), Physical Hydrology, HydroLearn, https://edx.hydrolearn.org/courses/course-v1:Utah_State_University+CEE6400+2019_Fall/about |
The content of this resource is derived from | The TIF file, LoganDEM.tif, is the Digital Elevation Model (DEM) data of the Logan Watershed. LoganDEM.tif data was obtained from the National Elevation Dataset available from the national map (http://viewer.nationalmap.gov/viewer/) |
The content of this resource is derived from | The shapefile, LoganOutletUSGSgage.shp, is the location of the USGS gage 10109000. |
The content of this resource is derived from | The PRISM_ppt_30yr_normal_800mM2_annual_bil.zip is the mean annual rainfall data obtained from the Oregon State University PRISM group. |
Credits
Funding Agencies
This resource was created using funding from the following sources:
Agency Name | Award Title | Award Number |
---|---|---|
National Science Foundation (NSF) | Collaborative Research: Improving Student Learning in Hydrology & Water Resources Engineering by Enabling the Development, Sharing and Interoperability of Active Learning Resou | 1726965 |
National Science Foundation (NSF) | Collaborative Research: Improving Student Learning in Hydrology & Water Resources Engineering by Enabling the Development, Sharing and Interoperability of Active Learning Resou | 1725989 |
Utah State University | Open Educational Resources (OER) Grant |
How to Cite
This resource is shared under the Creative Commons Attribution CC BY.
http://creativecommons.org/licenses/by/4.0/
Comments
There are currently no comments
New Comment