Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
This resource contains some files/folders that have non-preferred characters in their name. Show non-conforming files/folders.
This resource contains content types with files that need to be updated to match with metadata changes. Show content type files that need updating.
Authors: |
|
|
---|---|---|
Owners: |
|
This resource does not have an owner who is an active HydroShare user. Contact CUAHSI (help@cuahsi.org) for information on this resource. |
Type: | Resource | |
Storage: | The size of this resource is 141.9 KB | |
Created: | Feb 25, 2021 at 6:57 p.m. | |
Last updated: | Aug 19, 2021 at 2:50 p.m. (Metadata update) | |
Published date: | Aug 19, 2021 at 2:50 p.m. | |
DOI: | 10.4211/hs.ab2b33f27b3b4a0ca9a8ce4b8936753f | |
Citation: | See how to cite this resource |
Sharing Status: | Published |
---|---|
Views: | 975 |
Downloads: | 95 |
+1 Votes: | Be the first one to this. |
Comments: | No comments (yet) |
Abstract
The heterogeneity of carbon dioxide (CO2) and methane (CH4) sources within and across watersheds presents a challenge to understanding the contributions of different ecosystem patch types to stream corridor and watershed carbon cycling. Changing hydrologic connections between corridor patches (e.g., stream, riparian wetland, hillslope) can influence stream corridor greenhouse gas emissions, but the spatiotemporal dynamics of emissions within and among corridor patches are not well-quantified. To identify patterns and sources of carbon emissions across stream corridors, we measured gas concentrations and fluxes over two summers at Coweeta Hydrologic Laboratory, NC. We sampled CO2 and CH4 along four stream channels (including flowing and dry reaches), adjacent wetlands, and riparian hillslopes. Stream CO2 and CH4 emissions were spatially heterogeneous. All streams were sources of CO2 to the atmosphere (median = 97.2 mmol m-2d-1) but were sources or sinks of CH4 depending on location (-0.19 to 4.57 mmol m-2d-1). CO2 emissions were lower during the drier of two sampling years but were stable from month to month in the drier summer. CO2 and CH4 emissions also varied by both corridor and patch type; the presence of a riparian wetland in the corridor had the strongest impact on emissions. Wetland patches emitted more CO2 and CH4 (246 and 1.95 mmol m-2d-1, respectively) than their adjacent streams. High resolution sampling of carbon fluxes from patches within and among stream corridors improves our understanding of the connections between terrestrial, riparian, and aquatic zones in a watershed and their contributions to overall catchment carbon emissions.
Subject Keywords
Coverage
Spatial
Temporal
Start Date: | |
---|---|
End Date: |
Content
How to Cite
This resource is shared under the Creative Commons Attribution CC BY.
http://creativecommons.org/licenses/by/4.0/
Comments
There are currently no comments
New Comment