Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
This resource contains some files/folders that have non-preferred characters in their name. Show non-conforming files/folders.
This resource contains content types with files that need to be updated to match with metadata changes. Show content type files that need updating.
Authors: |
|
|
---|---|---|
Owners: |
|
This resource does not have an owner who is an active HydroShare user. Contact CUAHSI (help@cuahsi.org) for information on this resource. |
Type: | Resource | |
Storage: | The size of this resource is 3.2 KB | |
Created: | Feb 07, 2023 at 7:29 p.m. | |
Last updated: | Feb 07, 2023 at 7:30 p.m. | |
Citation: | See how to cite this resource |
Sharing Status: | Public |
---|---|
Views: | 753 |
Downloads: | 229 |
+1 Votes: | Be the first one to this. |
Comments: | No comments (yet) |
Abstract
This paper gives an account of the assessment and quantification of the water balance and the hydrogeological processes related to lake-groundwater interaction in the Pampa Plain by using hydrogeochemical, isotopic and flow numerical modeling techniques. La Salada is a permanent shallow lake, with an area of 5.8 km(2), located on the SE of Buenos Aires Province. A total of 29 lake water samples and 15 groundwater samples were collected for both hydrochemical analysis and environmental stable isotope determination. Water table depths were measured in wells closed to the lake. Groundwater samples appear grouped on the Local Meteoric Water Line, suggesting a well-mixed system and that rainfall is the main recharge source to the aquifer. Water evaporation process within La Salada is also corroborated by its isotopic composition. The model that best adjusts to La Salada Lake hydrochemical processes includes evaporation from groundwater, calcite precipitation with CO2 release and cationic exchange. The annual water balance terms for the lake basin indicates for each hydrological component the following values: 1.16 E-08 m(3) rainfall, 8.15 E-07 m(3) evapotranspiration, 1.90 E-06 m(3) runoff, 1.55 E-07 m(3) groundwater recharge, 6.01 E-06 m(3) groundwater discharge to the lake, 9.54 E-06 m(3) groundwater discharge to the river, 5.00 E-05 m(3) urban extraction and 4.90 E-06 m(3) lake evaporation. Integrated analysis of hydrochemical and isotopic information helped to calibrate the groundwater flow model, to validate the conceptual model and to quantitatively assess the basin water balance.
Subject Keywords
Coverage
Spatial
Content
Additional Metadata
Name | Value |
---|---|
DOI | 10.1007/s12665-012-1916-4 |
Depth | |
Scale | |
Layers | 1 layer |
Purpose | Groundwater resources;Scientific investigation (not related to applied problem) |
GroMoPo_ID | 107 |
IsVerified | True |
Model Code | Visual Transin |
Model Link | https://doi.org/10.1007/s12665-012-1916-4 |
Model Time | 2007-2010 |
Model Year | 2013 |
Model Authors | Bocanegra, E., Quiroz Londoño, O.M., MartÃnez, D.E.. Romanelli, A. |
Model Country | Argentina |
Data Available | Report/paper only |
Developer Email | qlondono@mdp.edu.ar |
Dominant Geology | Unconsolidated sediments |
Developer Country | Argentina |
Publication Title | Quantification of the water balance and hydrogeological processes of groundwater-lake interactions in the Pampa Plain, Argentina |
Original Developer | No |
Additional Information | This paper gives an account of the assessment and quantification of the water balance and the hydrogeological processes related to lake–groundwater interaction in the Pampa Plain by using hydrogeochemical, isotopic and flow numerical modeling techniques. La Salada is a permanent shallow lake, with an area of 5.8 km2, located on the SE of Buenos Aires Province. A total of 29 lake water samples and 15 groundwater samples were collected for both hydrochemical analysis and environmental stable isotope determination. Water table depths were measured in wells closed to the lake. Groundwater samples appear grouped on the Local Meteoric Water Line, suggesting a well-mixed system and that rainfall is the main recharge source to the aquifer. Water evaporation process within La Salada is also corroborated by its isotopic composition. The model that best adjusts to La Salada Lake hydrochemical processes includes evaporation from groundwater, calcite precipitation with CO2 release and cationic exchange. The annual water balance terms for the lake basin indicates for each hydrological component the following values: 1.16 E08 m3 rainfall, 8.15 E07 m3 evapotranspiration, 1.90 E06 m3 runoff, 1.55 E07 m3 groundwater recharge, 6.01 E06 m3 groundwater discharge to the lake, 9.54 E06 m3 groundwater discharge to the river, 5.00 E05 m3 urban extraction and 4.90 E06 m3 lake evaporation. Integrated analysis of hydrochemical and isotopic information helped to calibrate the groundwater flow model, to validate the conceptual model and to quantitatively assess the basin water balance. |
Integration or Coupling | |
Evaluation or Calibration | Dynamic water levels |
Geologic Data Availability |
How to Cite
This resource is shared under the Creative Commons Attribution CC BY.
http://creativecommons.org/licenses/by/4.0/
Comments
There are currently no comments
New Comment