Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
This resource contains some files/folders that have non-preferred characters in their name. Show non-conforming files/folders.
This resource contains content types with files that need to be updated to match with metadata changes. Show content type files that need updating.
Near-surface permeability in a supraglacial drainage basin on the Llewellyn Glacier, Juneau Icefield, British Columbia
Authors: |
|
|
---|---|---|
Owners: |
|
This resource does not have an owner who is an active HydroShare user. Contact CUAHSI (help@cuahsi.org) for information on this resource. |
Type: | Resource | |
Storage: | The size of this resource is 5.0 MB | |
Created: | Mar 31, 2018 at 11:25 p.m. | |
Last updated: | Apr 09, 2018 at 8:13 p.m. | |
Citation: | See how to cite this resource |
Sharing Status: | Public |
---|---|
Views: | 1721 |
Downloads: | 46 |
+1 Votes: | Be the first one to this. |
Comments: | No comments (yet) |
Abstract
Supraglacial channel networks link time varying melt production and meltwater routing on temperate glaciers. Such channel networks often include components of both surface transport in streams and subsurface porous flow through near-surface ice, firn or snowpack. Although subsurface transport if present will likely control network transport efficacy, it is the most poorly characterized component of the system. We present measurements of supraglacial channel spacing and network properties on the Juneau Icefield, subsurface water table height, and time variation of hydraulic characteristics including diurnal variability in water temperature. We combine these data with modeling of porous flow in weathered ice to infer near-surface permeability. Estimates are based on an observed phase lag between diurnal water temperature variations and discharge, and independently on measurement of water table surface elevation away from a stream. Both methods predict ice permeability on a 1–10 m scale in the range of 10−10–10−11 m2. These estimates are considerably smaller than common parameterizations of surface water flow on bare ice in the literature, as well as smaller than most estimates of snowpack permeability. For supraglacial environments in which porosity/permeability creation in the subsurface is balanced by porous flow of meltwater, our methods provide an estimate of microscale hydraulic properties from observations of supraglacial channel spacing.
Raw project data is available by contacting ctemps@unr.edu
Subject Keywords
Content
How to Cite
This resource is shared under the Creative Commons Attribution CC BY.
http://creativecommons.org/licenses/by/4.0/
Comments
There are currently no comments
New Comment