Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
This resource contains some files/folders that have non-preferred characters in their name. Show non-conforming files/folders.
This resource contains content types with files that need to be updated to match with metadata changes. Show content type files that need updating.
Authors: |
|
|
---|---|---|
Owners: |
|
This resource does not have an owner who is an active HydroShare user. Contact CUAHSI (help@cuahsi.org) for information on this resource. |
Type: | Resource | |
Storage: | The size of this resource is 407.9 KB | |
Created: | Mar 22, 2017 at 6:05 a.m. | |
Last updated: | Sep 07, 2017 at 7:29 p.m. | |
Citation: | See how to cite this resource |
Sharing Status: | Public |
---|---|
Views: | 2329 |
Downloads: | 54 |
+1 Votes: | 1 other +1 this |
Comments: | No comments (yet) |
Abstract
This tutorial demonstrates implementation of the Cellular Automaton Tree-GRass-Shrub Simulator (CATGRaSS) [Zhou et al., 2013] on a flat domain. This model is built using components from the Landlab component library. CATGRaSS is spatially explicit model of plant coexistence. It simulates local ecohydrologic dynamics (soil moisture, transpiration, biomass) and spatial evolution of tree, grass, and shrub Plant Functional Types (PFT) driven by rainfall and solar radiation.
Each cell in the model grid can hold a single PFT or remain empty. Tree and shrub plants disperse seeds to their neighbors. Grass seeds are assumed to be available at each cell. Establishment of plants in empty cells is determined probabilistically based on water stress of each PFT. Plants with lower water stress have higher probability of establishment. Plant mortality is simulated probabilistically as a result of aging and drought stress. Fires and grazing will be added to this model soon.
This model (driver) contains:
- A local vegetation dynamics model that simulates storm and inter-storm water balance and ecohydrologic fluxes (ET, runoff), and plant biomass dynamics by coupling the following components:
- PrecipitationDistribution
- Radiation
- PotentialEvapotranspiration
- SoilMoisture
- Vegetation
- A spatially explicit probabilistic cellular automaton component that simulates plant competition by tracking establishment and mortality of plants based on soil moisture stress:
- VegCA
To run this Jupyter notebook, please make sure that the following files are in the same folder:
- cellular_automaton_vegetation_flat_domain.ipynb (this notebook)
- Inputs_Vegetation_CA.txt (Input parameters for the model)
- Ecohyd_functions_flat.py (Utility functions)
[Ref: Zhou, X, E. Istanbulluoglu, and E.R. Vivoni. "Modeling the ecohydrological role of aspect-controlled radiation on tree-grass-shrub coexistence in a semiarid climate." Water Resources Research 49.5 (2013): 2872-2895]
Subject Keywords
Content
Related Resources
The content of this resource is derived from | http://www.hydroshare.org/resource/33ee1a9b1b53413ba9e8783150f01caa |
Title | Owners | Sharing Status | My Permission |
---|---|---|---|
Landlab - HydroShare Notebook Demos from Team Meeting 2017 | Christina Norton | Private & Shareable | None |
Credits
Funding Agencies
This resource was created using funding from the following sources:
Agency Name | Award Title | Award Number |
---|---|---|
NSF | Collaborative Research: SI2-SSI: Landlab: A Flexible, Open-Source Modeling Framework for Earth-Surface Dynamics | 1450412 |
How to Cite
This resource is shared under the Creative Commons Attribution CC BY.
http://creativecommons.org/licenses/by/4.0/
Comments
There are currently no comments
New Comment