Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
This resource contains some files/folders that have non-preferred characters in their name. Show non-conforming files/folders.
This resource contains content types with files that need to be updated to match with metadata changes. Show content type files that need updating.
Authors: |
|
|
---|---|---|
Owners: |
|
This resource does not have an owner who is an active HydroShare user. Contact CUAHSI (help@cuahsi.org) for information on this resource. |
Type: | Resource | |
Storage: | The size of this resource is 31.6 KB | |
Created: | Jan 13, 2022 at 5:10 p.m. | |
Last updated: | May 18, 2022 at 4:14 a.m. (Metadata update) | |
Published date: | May 18, 2022 at 4:14 a.m. | |
DOI: | 10.4211/hs.d2a724a994b34fa3880ca21562912788 | |
Citation: | See how to cite this resource |
Sharing Status: | Published |
---|---|
Views: | 909 |
Downloads: | 25 |
+1 Votes: | Be the first one to this. |
Comments: | 1 comment |
Abstract
Krypton-81 dating provides new insights into the timing, mechanisms, and extent of meteoric flushing versus retention of saline fluids in the subsurface in response to changes in geologic and/or climatic forcings over 50 ka to 1.2 Ma year timescales. Remnant Paleozoic seawater-derived brines associated with evaporites in the Paradox Basin, Colorado Plateau, are beyond the 81Kr dating range (>1.2 Ma) and have likely been preserved due to negative fluid buoyancy and low permeability. 81Kr dating of formation waters above the evaporites indicates topographically-driven meteoric recharge and salt dissolution since the Late Pleistocene (0.03-0.8 Ma). Formation waters below the evaporites (up to 3 km depth), in basal aquifers, contain relatively young meteoric water components (0.4-1.1 Ma based on 81Kr) that partially flushed remnant brines and dissolved evaporites. We demonstrate that recent, rapid denudation of the Colorado Plateau (<4-10 Ma) activated deep, basinal-scale flow systems as recorded in 81Kr groundwater age distributions.
Subject Keywords
Coverage
Spatial
Content
How to Cite
This resource is shared under the Creative Commons Attribution CC BY.
http://creativecommons.org/licenses/by/4.0/
Comments
New Comment