Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...

A field comparison of multiple techniques to quantify groundwater–surface-water interactions


Authors:
Owners: This resource does not have an owner who is an active HydroShare user. Contact CUAHSI (help@cuahsi.org) for information on this resource.
Type: Resource
Storage: The size of this resource is 0 bytes
Created: Mar 31, 2018 at 9:25 p.m.
Last updated: Apr 09, 2018 at 8:25 p.m.
Citation: See how to cite this resource
Sharing Status: Public
Views: 1957
Downloads: 42
+1 Votes: Be the first one to 
 this.
Comments: No comments (yet)

Abstract

AbstractGroundwater–surface-water (GW-SW) interactions in streams are difficult to quantify because of heterogeneity in hydraulic and reactive processes across a range of spatial and temporal scales. The challenge of quantifying these interactions has led to the development of several techniques, from centimeter-scale probes to whole-system tracers, including chemical, thermal, and electrical methods. We co-applied conservative and smart reactive solute-tracer tests, measurement of hydraulic heads, distributed temperature sensing, vertical profiles of solute tracer and temperature in the stream bed, and electrical resistivity imaging in a 450-m reach of a 3rd-order stream. GW-SW interactions were not spatially expansive, but were high in flux through a shallow hyporheic zone surrounding the reach. NaCl and resazurin tracers suggested different surface–subsurface exchange patterns in the upper ⅔ and lower ⅓ of the reach. Subsurface sampling of tracers and vertical thermal profiles quantified relatively high fluxes through a 10- to 20-cm deep hyporheic zone with chemical reactivity of the resazurin tracer indicated at 3-, 6-, and 9-cm sampling depths. Monitoring of hydraulic gradients along transects with MINIPOINT streambed samplers starting ∼40 m from the stream indicated that groundwater discharge prevented development of a larger hyporheic zone, which progressively decreased from the stream thalweg toward the banks. Distributed temperature sensing did not detect extensive inflow of ground water to the stream, and electrical resistivity imaging showed limited large-scale hyporheic exchange. We recommend choosing technique(s) based on: 1) clear definition of the questions to be addressed (physical, biological, or chemical processes), 2) explicit identification of the spatial and temporal scales to be covered and those required to provide an appropriate context for interpretation, and 3) maximizing generation of mechanistic understanding and reducing costs of implementing multiple techniques through collaborative research.

Raw project data is available by contacting ctemps@unr.edu

Subject Keywords

Content

How to Cite

Gonzalez-Pinzon, R. (2018). A field comparison of multiple techniques to quantify groundwater–surface-water interactions, HydroShare, http://www.hydroshare.org/resource/eec8d62ce9d547c197f8bc7e9bf895d5

This resource is shared under the Creative Commons Attribution CC BY.

http://creativecommons.org/licenses/by/4.0/
CC-BY

Comments

There are currently no comments

New Comment

required