Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
This resource contains some files/folders that have non-preferred characters in their name. Show non-conforming files/folders.
This resource contains content types with files that need to be updated to match with metadata changes. Show content type files that need updating.
Authors: |
|
|
---|---|---|
Owners: |
|
This resource does not have an owner who is an active HydroShare user. Contact CUAHSI (help@cuahsi.org) for information on this resource. |
Type: | Resource | |
Storage: | The size of this resource is 764.3 KB | |
Created: | Apr 01, 2018 at 5:11 p.m. | |
Last updated: | Apr 09, 2018 at 6:57 p.m. | |
Citation: | See how to cite this resource |
Sharing Status: | Public |
---|---|
Views: | 1802 |
Downloads: | 47 |
+1 Votes: | Be the first one to this. |
Comments: | No comments (yet) |
Abstract
The rate of groundwater flow has long been recognized as a critical control on solute transport in the subsurface. However, information about groundwater flux and its variability in space is rarely available, especially at the resolution required for investigations at sites of groundwater contamination. Recently, high‐resolution information about vertical variations in groundwater flux was obtained using fiber‐optic distributed temperature sensing technology to monitor the temperature response to active heating in a well. A series of vertical thermal profiles were acquired at a 1.4 cm resolution in a sand and gravel aquifer. These high‐resolution profiles, which display many of the same general features as hydraulic conductivity (K) profiles obtained using multiple techniques at the same well, provide new insights into site hydrostratigraphy. In particular, the near‐continuous profiles reveal the existence of thin zones of relatively high or low velocity that would be difficult to detect using other methods. These profiles also demonstrate that vertical variations in K may not be an accurate indicator of vertical variability in groundwater flux in highly heterogeneous aquifers.
Raw project data is available by contacting ctemps@unr.edu
Subject Keywords
Content
How to Cite
This resource is shared under the Creative Commons Attribution CC BY.
http://creativecommons.org/licenses/by/4.0/
Comments
There are currently no comments
New Comment