Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
This resource contains some files/folders that have non-preferred characters in their name. Show non-conforming files/folders.
This resource contains content types with files that need to be updated to match with metadata changes. Show content type files that need updating.
Storm surges, Waves, Hydrodynamics and Vegetation Surveys in Franklin Point State Park, MD, USA (2020-2021)
Authors: |
|
|
---|---|---|
Owners: |
|
This resource does not have an owner who is an active HydroShare user. Contact CUAHSI (help@cuahsi.org) for information on this resource. |
Type: | Resource | |
Storage: | The size of this resource is 22.4 GB | |
Created: | May 05, 2022 at 12:39 a.m. | |
Last updated: | Jun 07, 2022 at 3:01 p.m. (Metadata update) | |
Published date: | Jun 01, 2022 at 10:13 p.m. | |
DOI: | 10.4211/hs.f7350813a1de4025a3b8e4d05284dc57 | |
Citation: | See how to cite this resource | |
Content types: | Geographic Feature Content Geographic Raster Content |
Sharing Status: | Published |
---|---|
Views: | 1039 |
Downloads: | 13 |
+1 Votes: | Be the first one to this. |
Comments: | No comments (yet) |
Abstract
These datasets include measurements of hydrodynamic (currents and water levels) and wave conditions, vegetation bio-mechanic characteristics (biomass, stem height, diameter, and density), and topo-bathymetric features during the period of (2020-2021) that were measured in the field during extreme events, regular tidal cycles, and over different seasons. This dataset provides the information for the campaigns in Franklin Point State Park, Maryland, USA. Hydrodynamic measurements were carried out with Acoustic Doppler Current Profilers (ADCPs) (Aquadopp Nortek 2 MHz) and RBR D-wave sensors; vegetation surveys included the measurements of vegetation height, diameter and stem spacing using randomly placed 0.25 m2 quadrats on the ground surface. The sensors, topo-bathy data and vegetation measurement’s locations are georeferenced using a differential GPS Trimble R4. SAV measurements (when present) were carried out by using haphazardly placed 0.25m2 quadrats. At each site, the team will measured 1) total SAV percent cover, 2) percent cover of each individual species, 3) canopy height, 4) epiphyte presence on SAV leaf blades, and 5) water depth.
This field work is part of the project “EESLR 2019: Quantifying the benefits of natural and nature-based features in Maryland’s Chesapeake and Atlantic Coastal Bays to inform conservation and management under future sea level rise scenarios” funded by NOAA (Award# NA19NOS4780179). The project is a collaboration between George Mason University, the Maryland Department of Natural Resources (DNR) and The Nature Conservancy (TNC). The overall goal of the project is to quantify the wave attenuation and flood reduction benefits of marshes, SAV and other natural and nature-based features (NNBF) along the shores of Maryland’s Chesapeake and Atlantic Coastal Bays. This project will inform management actions by DNR to maintain or enhance the ecosystem services of marshes and other natural features on state-owned lands; re-evaluate Chesapeake Bay SAV restoration goals; improve existing conservation prioritization tools; and provide relatable, local examples to advance efforts by DNR, TNC, Eastern Shore Land Conservancy (ESLC) and others to promote the use of NNBF in county and municipal adaptation plans.
Subject Keywords
Coverage
Spatial
Temporal
Start Date: | |
---|---|
End Date: |
Content
Data Services
How to Cite
This resource is shared under the Creative Commons Attribution CC BY.
http://creativecommons.org/licenses/by/4.0/
Comments
There are currently no comments
New Comment