Checking for non-preferred file/folder path names (may take a long time depending on the number of files/folders) ...
This resource contains some files/folders that have non-preferred characters in their name. Show non-conforming files/folders.
This resource contains content types with files that need to be updated to match with metadata changes. Show content type files that need updating.
STOTEN: Modeling the sensitivity of cyanobacteria blooms to plausible changes in precipitation and air temperature variability
Authors: |
|
|
---|---|---|
Owners: |
|
This resource does not have an owner who is an active HydroShare user. Contact CUAHSI (help@cuahsi.org) for information on this resource. |
Type: | Resource | |
Storage: | The size of this resource is 852.3 MB | |
Created: | Dec 12, 2021 at 8:09 p.m. | |
Last updated: | Jan 08, 2022 at 9:49 p.m. | |
Citation: | See how to cite this resource |
Sharing Status: | Public |
---|---|
Views: | 819 |
Downloads: | 7 |
+1 Votes: | Be the first one to this. |
Comments: | No comments (yet) |
Abstract
Many recent studies have attributed the observed variability of cyanobacteria blooms to meteorological drivers and have projected blooms with worsening societal and ecological impacts under future climate scenarios. Nonetheless, few studies have jointly examined their sensitivity to projected changes in both precipitation and temperature variability. Using an Integrated Assessment Model (IAM) of Lake Champlain's eutrophic Missisquoi Bay, we demonstrate a factorial design approach for evaluating the sensitivity of concentrations of chlorophyll a (chl-a), a cyanobacteria surrogate, to global climate model-informed changes in the central tendency and variability of daily precipitation and air temperature.
An Analysis of Variance (ANOVA) and multivariate contour plots highlight synergistic effects of these climatic changes on exceedances of the World Health Organization's moderate 50 μg/L concentration threshold for recreational contact. Although increased precipitation produces greater riverine total phosphorus loads, warmer and drier scenarios produce the most severe blooms due to the greater mobilization and cyanobacteria uptake of legacy phosphorus under these conditions. Increases in daily precipitation variability aggravate blooms most under warmer and wetter scenarios. Greater temperature variability raises exceedances under current air temperatures but reduces them under more severe warming when water temperatures exceed optimal values for cyanobacteria growth more often. Our experiments, controlled for wind-induced changes to lake water quality, signal the importance of larger summer runoff events for curtailing bloom growth through reductions of water temperature, sunlight penetration and stratification. Finally, the importance of sequences of wet and dry periods in generating cyanobacteria blooms motivates future research on bloom responses to changes in interannual climate persistence.
Subject Keywords
Coverage
Spatial
Temporal
Start Date: | |
---|---|
End Date: |
Content
Credits
Funding Agencies
This resource was created using funding from the following sources:
Agency Name | Award Title | Award Number |
---|---|---|
National Science Foundation - Office of Integrated Activities | RII Track-1 Lake Champlain Basin Resilience to Extreme Events | OIA - 1556770 |
How to Cite
This resource is shared under the Creative Commons Attribution CC BY.
http://creativecommons.org/licenses/by/4.0/
Comments
There are currently no comments
New Comment