Mahmoud Osman

Johns Hopkins University;Cairo University | Research Scientist

Subject Areas: Drought monitoring and prediction, Hydroclimatology, Weather and climate extremes

 Recent Activity

ABSTRACT:

We present a global dataset of flash drought events, meticulously compiled using the Soil Moisture Volatility Index (SMVI), a cutting-edge tool initially applied within the United States. This dataset marks a significant expansion of the SMVI methodology to a global context, offering an essential resource for comprehensively understanding and predicting rapidly evolving drought phenomena. Characterized by detailed information on the onset, duration, and severity of each event, the dataset covers a wide array of climatic zones, thus providing a diverse and inclusive global perspective. A key feature of this dataset is the integration of atmospheric variables, which sheds light on the meteorological factors driving and influencing flash droughts. Such integration allows for an in-depth exploration of the complex interplay between soil moisture and atmospheric conditions, enhancing our understanding of drought dynamics.

Show More

ABSTRACT:

We present a global dataset of flash drought events, meticulously compiled using the Soil Moisture Volatility Index (SMVI), a cutting-edge tool initially applied within the United States. This dataset marks a significant expansion of the SMVI methodology to a global context, offering an essential resource for comprehensively understanding and predicting rapidly evolving drought phenomena. Characterized by detailed information on the onset, duration, and severity of each event, the dataset covers a wide array of climatic zones, thus providing a diverse and inclusive global perspective. A key feature of this dataset is the integration of atmospheric variables, which sheds light on the meteorological factors driving and influencing flash droughts. Such integration allows for an in-depth exploration of the complex interplay between soil moisture and atmospheric conditions, enhancing our understanding of drought dynamics.

Show More

ABSTRACT:

We present a global dataset of flash drought events, meticulously compiled using the Soil Moisture Volatility Index (SMVI), a cutting-edge tool initially applied within the United States. This dataset marks a significant expansion of the SMVI methodology to a global context, offering an essential resource for comprehensively understanding and predicting rapidly evolving drought phenomena. Characterized by detailed information on the onset, duration, and severity of each event, the dataset covers a wide array of climatic zones, thus providing a diverse and inclusive global perspective. A key feature of this dataset is the integration of atmospheric variables, which sheds light on the meteorological factors driving and influencing flash droughts. Such integration allows for an in-depth exploration of the complex interplay between soil moisture and atmospheric conditions, enhancing our understanding of drought dynamics.

Show More

ABSTRACT:

We present a global dataset of flash drought events, meticulously compiled using the Soil Moisture Volatility Index (SMVI), a cutting-edge tool initially applied within the United States. This dataset marks a significant expansion of the SMVI methodology to a global context, offering an essential resource for comprehensively understanding and predicting rapidly evolving drought phenomena. Characterized by detailed information on the onset, duration, and severity of each event, the dataset covers a wide array of climatic zones, thus providing a diverse and inclusive global perspective. A key feature of this dataset is the integration of atmospheric variables, which sheds light on the meteorological factors driving and influencing flash droughts. Such integration allows for an in-depth exploration of the complex interplay between soil moisture and atmospheric conditions, enhancing our understanding of drought dynamics.

Show More

 Contact

Mobile +1 (970) 412-7545
Email (Log in to send email)
Resources
All 0
Collection 0
Resource 0
App Connector 0
Resource Resource
SMVI Global Flash Droughts Dataset
Created: Dec. 20, 2023, 3:03 a.m.
Authors: Osman, Mahmoud · Benjamin Zaitchik · Jason Otkin · Martha Anderson

ABSTRACT:

We present a global dataset of flash drought events, meticulously compiled using the Soil Moisture Volatility Index (SMVI), a cutting-edge tool initially applied within the United States. This dataset marks a significant expansion of the SMVI methodology to a global context, offering an essential resource for comprehensively understanding and predicting rapidly evolving drought phenomena. Characterized by detailed information on the onset, duration, and severity of each event, the dataset covers a wide array of climatic zones, thus providing a diverse and inclusive global perspective. A key feature of this dataset is the integration of atmospheric variables, which sheds light on the meteorological factors driving and influencing flash droughts. Such integration allows for an in-depth exploration of the complex interplay between soil moisture and atmospheric conditions, enhancing our understanding of drought dynamics.

Show More
Resource Resource
SMVI Global Flash Droughts Dataset
Created: Feb. 21, 2024, 4:33 p.m.
Authors: Osman, Mahmoud · Benjamin Zaitchik · Jason Otkin · Martha Anderson

ABSTRACT:

We present a global dataset of flash drought events, meticulously compiled using the Soil Moisture Volatility Index (SMVI), a cutting-edge tool initially applied within the United States. This dataset marks a significant expansion of the SMVI methodology to a global context, offering an essential resource for comprehensively understanding and predicting rapidly evolving drought phenomena. Characterized by detailed information on the onset, duration, and severity of each event, the dataset covers a wide array of climatic zones, thus providing a diverse and inclusive global perspective. A key feature of this dataset is the integration of atmospheric variables, which sheds light on the meteorological factors driving and influencing flash droughts. Such integration allows for an in-depth exploration of the complex interplay between soil moisture and atmospheric conditions, enhancing our understanding of drought dynamics.

Show More
Resource Resource
SMVI Global Flash Droughts Dataset
Created: Feb. 25, 2024, 4:19 a.m.
Authors: Osman, Mahmoud · Benjamin Zaitchik · Jason Otkin · Martha Anderson

ABSTRACT:

We present a global dataset of flash drought events, meticulously compiled using the Soil Moisture Volatility Index (SMVI), a cutting-edge tool initially applied within the United States. This dataset marks a significant expansion of the SMVI methodology to a global context, offering an essential resource for comprehensively understanding and predicting rapidly evolving drought phenomena. Characterized by detailed information on the onset, duration, and severity of each event, the dataset covers a wide array of climatic zones, thus providing a diverse and inclusive global perspective. A key feature of this dataset is the integration of atmospheric variables, which sheds light on the meteorological factors driving and influencing flash droughts. Such integration allows for an in-depth exploration of the complex interplay between soil moisture and atmospheric conditions, enhancing our understanding of drought dynamics.

Show More
Resource Resource
SMVI Global Flash Droughts Dataset
Created: June 5, 2024, 8:19 a.m.
Authors: Osman, Mahmoud · Benjamin Zaitchik · Jason Otkin · Martha Anderson · Talebpour, Mahdad

ABSTRACT:

We present a global dataset of flash drought events, meticulously compiled using the Soil Moisture Volatility Index (SMVI), a cutting-edge tool initially applied within the United States. This dataset marks a significant expansion of the SMVI methodology to a global context, offering an essential resource for comprehensively understanding and predicting rapidly evolving drought phenomena. Characterized by detailed information on the onset, duration, and severity of each event, the dataset covers a wide array of climatic zones, thus providing a diverse and inclusive global perspective. A key feature of this dataset is the integration of atmospheric variables, which sheds light on the meteorological factors driving and influencing flash droughts. Such integration allows for an in-depth exploration of the complex interplay between soil moisture and atmospheric conditions, enhancing our understanding of drought dynamics.

Show More