Burcu Tezcan

Arizona State University

 Recent Activity

ABSTRACT:

This repository contains R scripts for implementing a computationally efficient 4-state Hidden Markov Model (HMM) that uses temperature as a covariate to generate ensembles of plausible Palmer Modified Drought Index (PMDI) scenarios across the Western U.S. The model uses paleo PMDI data, which spans from 1500 to 1980 with a matrix grid of 1823 x 481 (e.g., 1823 grid-cells and 481 years). Similarly, paleo temperature data covers the same period, arranged in a matrix grid of 1637 grid cells by 481 years. To address the high dimensionality of the datasets, Principal Component Analysis (PCA) is applied to each variable, and the first six principal components (PCs) from both PMDI and temperature are retained as input to the HMM. The trained HMM is then used to simulate future PMDI scenarios by leveraging bias-corrected CMIP6 temperature projections under the Shared Socioeconomic Pathway (SSP) 2–4.5 scenario. The HMM framework is designed to capture the spatiotemporal variability and regime-shifting behavior of hydroclimatic patterns. It provides critical insights into the spatial correlation of wet and dry conditions across the Western U.S., supporting regional drought risk assessment and long-term water resource planning.

For a more detailed description of the model, please refer to the following paper:

Tezcan, B., & Garcia, M. (2025). Training a hidden Markov model with PMDI and temperature to create climate informed scenarios.
Frontiers in Water, 7, Article 1472695. https://doi.org/10.3389/frwa.2025.1472695

Show More

 Contact

Resources
All 0
Collection 0
Resource 0
App Connector 0
Resource Resource

ABSTRACT:

This repository contains R scripts for implementing a computationally efficient 4-state Hidden Markov Model (HMM) that uses temperature as a covariate to generate ensembles of plausible Palmer Modified Drought Index (PMDI) scenarios across the Western U.S. The model uses paleo PMDI data, which spans from 1500 to 1980 with a matrix grid of 1823 x 481 (e.g., 1823 grid-cells and 481 years). Similarly, paleo temperature data covers the same period, arranged in a matrix grid of 1637 grid cells by 481 years. To address the high dimensionality of the datasets, Principal Component Analysis (PCA) is applied to each variable, and the first six principal components (PCs) from both PMDI and temperature are retained as input to the HMM. The trained HMM is then used to simulate future PMDI scenarios by leveraging bias-corrected CMIP6 temperature projections under the Shared Socioeconomic Pathway (SSP) 2–4.5 scenario. The HMM framework is designed to capture the spatiotemporal variability and regime-shifting behavior of hydroclimatic patterns. It provides critical insights into the spatial correlation of wet and dry conditions across the Western U.S., supporting regional drought risk assessment and long-term water resource planning.

For a more detailed description of the model, please refer to the following paper:

Tezcan, B., & Garcia, M. (2025). Training a hidden Markov model with PMDI and temperature to create climate informed scenarios.
Frontiers in Water, 7, Article 1472695. https://doi.org/10.3389/frwa.2025.1472695

Show More