Michelle Wolford

University of Alabama - Tuscaloosa

Subject Areas: Biogeochemistry,Watershed studies

 Recent Activity

ABSTRACT:

The following standard operating procedure (SOP) was created for the the Aquatic Intermittency effects on Microbiomes in Streams (AIMS), an NSF EPSCoR funded project (OIA 2019603) seeking to explore the impacts of stream drying on downstream water quality across Kansas, Oklahoma, Alabama, Idaho, and Mississippi. AIMS integrates datasets on hydrology, microbiomes, macroinvertebrates, and biogeochemistry in three regions (Mountain West, Great Plains, and Southeast Forests) to test the overarching hypothesis that physical drivers (e.g., climate, hydrology) interact with biological drivers (e.g., microbes, biogeochemistry) to control water quality in intermittent streams. An overview of the AIMS project can be found here: https://youtu.be/HDKIBNEnwdM.

This protocol details the process for measuring streamflow within the stream network focused largely on low-flow conditions using dilution gaging techniques.

Also included in this resource is the AIMS datasheet used when taking measurements in the field.

The "living" version of this SOP is available on Google Docs: https://docs.google.com/document/d/18mvs_aAr677eQDrwUuassMTWmjggSQxVkmkr0vgF0J4/edit?tab=t.0

From this SOP, the following data types will be created: stream width, depth, discharge (AIMS rTypes created: ENVI, DISC).

Show More

ABSTRACT:

Streams are dynamic reactors, where flow often controls carbon (C) dynamics. Riverine C exists largely as dissolved and fine particulate organic matter (DOM<0.7 µm and 0.7 µm<FPOM<1 mm, respectively). Although FPOM contributes significantly to C stocks and stream metabolism, FPOM processing is often unaccounted for in stream C cycling measurements and budgets. To address this knowledge gap, we investigated OM fate across flow conditions at two sites in a forested stream network in Alabama, USA: the upstream headwaters and the downstream outlet of Pendergrass Creek. At each site, we quantified DOM and FPOM in surface water and the streambed as benthic organic matter (BOM) for one year. We found that FPOM and BOM diluted with flow and increased during leaf on, while DOM (as dissolved organic C) did not change with flow and increased during leaf off. To assess the microbial metabolic activity (MMA) of different OM pools, we conducted resazurin-resorufin incubation assays as a proxy for respiration. Rates of MMA across all three OM pools decreased while FPOM C:[N]itrogen ratios increased at higher flows, indicating more reactive OM is likely stored and respired at low flows. We also observed that FPOM often accounted for the majority of water column respiration potential. Our findings, corroborated by a hydrologic model of flowing network length, suggest that as stream flows decrease with climate change, the quantity of OM stored and respired in headwater streams may increase, influencing C emissions and downstream resources.

Show More

 Contact

Resources
All 0
Collection 0
Resource 0
App Connector 0
Resource Resource

ABSTRACT:

Streams are dynamic reactors, where flow often controls carbon (C) dynamics. Riverine C exists largely as dissolved and fine particulate organic matter (DOM<0.7 µm and 0.7 µm<FPOM<1 mm, respectively). Although FPOM contributes significantly to C stocks and stream metabolism, FPOM processing is often unaccounted for in stream C cycling measurements and budgets. To address this knowledge gap, we investigated OM fate across flow conditions at two sites in a forested stream network in Alabama, USA: the upstream headwaters and the downstream outlet of Pendergrass Creek. At each site, we quantified DOM and FPOM in surface water and the streambed as benthic organic matter (BOM) for one year. We found that FPOM and BOM diluted with flow and increased during leaf on, while DOM (as dissolved organic C) did not change with flow and increased during leaf off. To assess the microbial metabolic activity (MMA) of different OM pools, we conducted resazurin-resorufin incubation assays as a proxy for respiration. Rates of MMA across all three OM pools decreased while FPOM C:[N]itrogen ratios increased at higher flows, indicating more reactive OM is likely stored and respired at low flows. We also observed that FPOM often accounted for the majority of water column respiration potential. Our findings, corroborated by a hydrologic model of flowing network length, suggest that as stream flows decrease with climate change, the quantity of OM stored and respired in headwater streams may increase, influencing C emissions and downstream resources.

Show More
Resource Resource

ABSTRACT:

The following standard operating procedure (SOP) was created for the the Aquatic Intermittency effects on Microbiomes in Streams (AIMS), an NSF EPSCoR funded project (OIA 2019603) seeking to explore the impacts of stream drying on downstream water quality across Kansas, Oklahoma, Alabama, Idaho, and Mississippi. AIMS integrates datasets on hydrology, microbiomes, macroinvertebrates, and biogeochemistry in three regions (Mountain West, Great Plains, and Southeast Forests) to test the overarching hypothesis that physical drivers (e.g., climate, hydrology) interact with biological drivers (e.g., microbes, biogeochemistry) to control water quality in intermittent streams. An overview of the AIMS project can be found here: https://youtu.be/HDKIBNEnwdM.

This protocol details the process for measuring streamflow within the stream network focused largely on low-flow conditions using dilution gaging techniques.

Also included in this resource is the AIMS datasheet used when taking measurements in the field.

The "living" version of this SOP is available on Google Docs: https://docs.google.com/document/d/18mvs_aAr677eQDrwUuassMTWmjggSQxVkmkr0vgF0J4/edit?tab=t.0

From this SOP, the following data types will be created: stream width, depth, discharge (AIMS rTypes created: ENVI, DISC).

Show More