Scott Zimmer

Utah State University

 Recent Activity

ABSTRACT:

Ecologists have built numerous models to project how climate change will impact rangeland vegetation, but these projections are difficult to validate, making their utility for land management planning unclear. In the absence of direct validation, researchers can ask whether projections from different models are consistent. Here, we analyzed 42 models of climate change impacts on sagebrush (Artemisia tridentata Nutt.), cheatgrass (Bromus tectorum L.), pinyon-juniper (Pinus L. spp. and Juniperus L. spp.), and forage production on Bureau of Land Management (BLM) lands in the United States Intermountain West. These models consistently projected the potential for pinyon-juniper declines and forage production increases. Sagebrush models consistently projected no change in most areas, and declines in southern extremes. In contrast, projected impacts on cheatgrass were weak or uncertain. In most instances, projections for high and low emissions scenarios differed only slightly.

The projected vegetation impacts have important management implications for agencies such as the BLM. Pinyon-juniper declines would reduce the need to control pinyon-juniper encroachment, and increases in forage production could benefit livestock and wildlife populations in some regions. Sagebrush conservation and restoration projects may be challenged in areas projected to experience sagebrush declines. However, projected vegetation impacts may also interact with increasing future wildfire risk in ways single-response models do not anticipate. In particular, projected increases in forage production could increase management challenges related to fire.

Included in this page are the data, code, and directions used to complete this analysis and visualize results. This includes the original images of model results used in our analysis, and the code used to process and analyze these images to produce our final results.

Show More

ABSTRACT:

Ecologists have built numerous models to predict how climate change will impact vegetation, but these predictions are difficult to validate, making their utility for land management planning unclear. In the absence of direct validation, researchers can ask whether predictions from varying models are consistent. Here, we analyzed 43 models of climate change impacts on sagebrush (Artemisia tridentata Nutt.), cheatgrass (Bromus tectorum L.), pinyon-juniper (Pinus spp. and Juniperus spp.), and forage production on Bureau of Land Management (BLM) lands in the United States Intermountain West. These models consistently projected pinyon-juniper declines, forage production increases, and the potential for sagebrush increases in some regions of the Intermountain West. In contrast, models of cheatgrass did not predict consistent changes, making cheatgrass projections uncertain. While differences in emission scenarios had little influence on model projections, predictions from different modeling approaches were inconsistent in some cases. This model-choice uncertainty emphasizes the importance of comparisons such as this.

The projected vegetation changes have important management implications for agencies such as the BLM. Pinyon-juniper declines would reduce the BLM’s need to control pinyon-juniper encroachment, and increases in forage production could benefit livestock and wildlife populations in some regions. Sagebrush habitat may benefit where sagebrush is predicted to increase, but sagebrush conservation and restoration projects will be challenged in areas where climate may not remain hospitable. Projected vegetation changes may also interact with increasing future wildfire risk, potentially impacting vegetation and increasing management challenges related to fire.

Included in this page are the data and code used to complete this analysis and visualize results. This includes the original images of model results used in our analysis, and the code used to process and analyze these images to produce our final results.

Show More

ABSTRACT:

Ecologists have built numerous models to predict how climate change will impact vegetation, but these predictions are difficult to validate, making their utility for land management planning unclear. In the absence of direct validation, researchers can ask whether predictions from varying models are consistent. Here, we analyzed 43 models of climate change impacts on sagebrush (Artemisia tridentata Nutt.), cheatgrass (Bromus tectorum L.), pinyon-juniper (Pinus spp. and Juniperus spp.), and forage production on Bureau of Land Management (BLM) lands in the United States Intermountain West. These models consistently projected pinyon-juniper declines, forage production increases, and the potential for sagebrush increases in some regions of the Intermountain West. In contrast, models of cheatgrass did not predict consistent changes, making cheatgrass projections uncertain. While differences in emission scenarios had little influence on model projections, predictions from different modeling approaches were inconsistent in some cases. This model-choice uncertainty emphasizes the importance of comparisons such as this.
The projected vegetation changes have important management implications for agencies such as the BLM. Pinyon-juniper declines would reduce the BLM’s need to control pinyon-juniper encroachment, and increases in forage production could benefit livestock and wildlife populations in some regions. Sagebrush habitat may benefit where sagebrush is predicted to increase, but sagebrush conservation and restoration projects will be challenged in areas where climate may not remain hospitable. Projected vegetation changes may also interact with increasing future wildfire risk, potentially impacting vegetation and increasing management challenges related to fire.

Show More

 Contact

Resources
All 0
Collection 0
Resource 0
App Connector 0
Resource Resource

ABSTRACT:

Ecologists have built numerous models to predict how climate change will impact vegetation, but these predictions are difficult to validate, making their utility for land management planning unclear. In the absence of direct validation, researchers can ask whether predictions from varying models are consistent. Here, we analyzed 43 models of climate change impacts on sagebrush (Artemisia tridentata Nutt.), cheatgrass (Bromus tectorum L.), pinyon-juniper (Pinus spp. and Juniperus spp.), and forage production on Bureau of Land Management (BLM) lands in the United States Intermountain West. These models consistently projected pinyon-juniper declines, forage production increases, and the potential for sagebrush increases in some regions of the Intermountain West. In contrast, models of cheatgrass did not predict consistent changes, making cheatgrass projections uncertain. While differences in emission scenarios had little influence on model projections, predictions from different modeling approaches were inconsistent in some cases. This model-choice uncertainty emphasizes the importance of comparisons such as this.
The projected vegetation changes have important management implications for agencies such as the BLM. Pinyon-juniper declines would reduce the BLM’s need to control pinyon-juniper encroachment, and increases in forage production could benefit livestock and wildlife populations in some regions. Sagebrush habitat may benefit where sagebrush is predicted to increase, but sagebrush conservation and restoration projects will be challenged in areas where climate may not remain hospitable. Projected vegetation changes may also interact with increasing future wildfire risk, potentially impacting vegetation and increasing management challenges related to fire.

Show More
Resource Resource

ABSTRACT:

Ecologists have built numerous models to predict how climate change will impact vegetation, but these predictions are difficult to validate, making their utility for land management planning unclear. In the absence of direct validation, researchers can ask whether predictions from varying models are consistent. Here, we analyzed 43 models of climate change impacts on sagebrush (Artemisia tridentata Nutt.), cheatgrass (Bromus tectorum L.), pinyon-juniper (Pinus spp. and Juniperus spp.), and forage production on Bureau of Land Management (BLM) lands in the United States Intermountain West. These models consistently projected pinyon-juniper declines, forage production increases, and the potential for sagebrush increases in some regions of the Intermountain West. In contrast, models of cheatgrass did not predict consistent changes, making cheatgrass projections uncertain. While differences in emission scenarios had little influence on model projections, predictions from different modeling approaches were inconsistent in some cases. This model-choice uncertainty emphasizes the importance of comparisons such as this.

The projected vegetation changes have important management implications for agencies such as the BLM. Pinyon-juniper declines would reduce the BLM’s need to control pinyon-juniper encroachment, and increases in forage production could benefit livestock and wildlife populations in some regions. Sagebrush habitat may benefit where sagebrush is predicted to increase, but sagebrush conservation and restoration projects will be challenged in areas where climate may not remain hospitable. Projected vegetation changes may also interact with increasing future wildfire risk, potentially impacting vegetation and increasing management challenges related to fire.

Included in this page are the data and code used to complete this analysis and visualize results. This includes the original images of model results used in our analysis, and the code used to process and analyze these images to produce our final results.

Show More
Resource Resource

ABSTRACT:

Ecologists have built numerous models to project how climate change will impact rangeland vegetation, but these projections are difficult to validate, making their utility for land management planning unclear. In the absence of direct validation, researchers can ask whether projections from different models are consistent. Here, we analyzed 42 models of climate change impacts on sagebrush (Artemisia tridentata Nutt.), cheatgrass (Bromus tectorum L.), pinyon-juniper (Pinus L. spp. and Juniperus L. spp.), and forage production on Bureau of Land Management (BLM) lands in the United States Intermountain West. These models consistently projected the potential for pinyon-juniper declines and forage production increases. Sagebrush models consistently projected no change in most areas, and declines in southern extremes. In contrast, projected impacts on cheatgrass were weak or uncertain. In most instances, projections for high and low emissions scenarios differed only slightly.

The projected vegetation impacts have important management implications for agencies such as the BLM. Pinyon-juniper declines would reduce the need to control pinyon-juniper encroachment, and increases in forage production could benefit livestock and wildlife populations in some regions. Sagebrush conservation and restoration projects may be challenged in areas projected to experience sagebrush declines. However, projected vegetation impacts may also interact with increasing future wildfire risk in ways single-response models do not anticipate. In particular, projected increases in forage production could increase management challenges related to fire.

Included in this page are the data, code, and directions used to complete this analysis and visualize results. This includes the original images of model results used in our analysis, and the code used to process and analyze these images to produce our final results.

Show More