Gustavo de Almeida Coelho

Furman University | Assistant Professor

Subject Areas: Hydrology, Hydraulics, Water Resources, Climate, Weather

 Recent Activity

ABSTRACT:

The intensification of extreme precipitation in a warming climate is expected to increase flood risk. In order to support flood resilience efforts, it is important to anticipate and quantify potential changes in design standards under future climate conditions. This study assessed how extreme precipitation is expected to change over the 21st century in relation to current National Oceanic and Atmospheric Administration (NOAA) Atlas 14 design standards over the contiguous United States (CONUS). We used the Community Earth System Model Version 2 large ensemble (CESM2-LE) simulations from the Coupled Model Intercomparison Project Phase 6 and incorporated future changes into flood engineering design standard with a spatially distributed quantile delta mapping method. Relative changes in extreme daily precipitation were computed for multiple average recurrence intervals (ARIs) up to 100-yr and different planning horizons (2020, 2040, 2060, 2080, and 2100). The results indicated an intensification of extreme precipitation by approximately 10-40% in northern regions and 20-80% in southern regions by 2100. The current 100-yr ARI with 24-hour duration from NOAA Atlas 14 is projected to become the 50-yr ARI in the Northern Great Plains, less than the 25-yr ARI in Southwest areas, and approximately the 25-yr ARI in the other regions by 2100. While a nationwide consensus is still needed, this work presents a possible methodology for incorporating climate uncertainty in engineering design. A comparison across major metropolitan areas also illustrates regional variability in projected changes relative to NOAA Atlas 14, suggesting a need for varied local-scale responses.

Show More

 Contact

Mobile 5716436143
Email (Log in to send email)
Resources
All 0
Collection 0
Resource 0
App Connector 0
Resource Resource

ABSTRACT:

The intensification of extreme precipitation in a warming climate is expected to increase flood risk. In order to support flood resilience efforts, it is important to anticipate and quantify potential changes in design standards under future climate conditions. This study assessed how extreme precipitation is expected to change over the 21st century in relation to current National Oceanic and Atmospheric Administration (NOAA) Atlas 14 design standards over the contiguous United States (CONUS). We used the Community Earth System Model Version 2 large ensemble (CESM2-LE) simulations from the Coupled Model Intercomparison Project Phase 6 and incorporated future changes into flood engineering design standard with a spatially distributed quantile delta mapping method. Relative changes in extreme daily precipitation were computed for multiple average recurrence intervals (ARIs) up to 100-yr and different planning horizons (2020, 2040, 2060, 2080, and 2100). The results indicated an intensification of extreme precipitation by approximately 10-40% in northern regions and 20-80% in southern regions by 2100. The current 100-yr ARI with 24-hour duration from NOAA Atlas 14 is projected to become the 50-yr ARI in the Northern Great Plains, less than the 25-yr ARI in Southwest areas, and approximately the 25-yr ARI in the other regions by 2100. While a nationwide consensus is still needed, this work presents a possible methodology for incorporating climate uncertainty in engineering design. A comparison across major metropolitan areas also illustrates regional variability in projected changes relative to NOAA Atlas 14, suggesting a need for varied local-scale responses.

Show More